Answer: There are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Explanation:
Given: Volume = 38.0 L
Pressure = 1430 mm Hg (1 mm Hg = 0.00131579 atm) = 1.9 atm
Temperature = 273.15 K
Using ideal gas equation, the moles of gas will be calculated as follows.

where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T =temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Answer:
237.2 mL.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
(XMV) acid = (XMV) base.
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HCl = (XMV) NaOH.</em>
<em></em>
For HCl; X = 1, M = 0.5 M, V = ??? mL.
For NaOH, X = 1, M = 1.54 M, V = 77.0 mL.
<em>∴ V of HCl = (XMV) NaOH / (XV) HCl = (</em>1)(1.54 M)(77.0 mL) / (1)(0.5 M) = <em>237.2 mL.</em>
The phosphorous cycle does not include an atmospheric component because phosphorous does not cycle through the atmosphere. In comparison, important processes of the carbon and nitrogen cycle occur in the atmosphere
The equation : y=3x-5
<h3>Further explanation
</h3>
Straight-line equations are mathematical equations that are described in the plane of cartesian coordinates
General formula
y-y1 = m(x-x1)
or
y = mx + c
Where
m = straight-line gradient which is the slope of the line
x1, y1 = the Cartesian coordinate that is crossed by the line
c = constant
The formula for a gradient (m) between 2 points in a line
m = Δy / Δx

