Answer:

Explanation:
Given that:-
Pressure = 
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) =
P (atm)
Given the value of pressure = 43,836 Pa
So,
=
atm
Pressure = 6.80977 atm
Volume =
= 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-

k is Boltzmann's constant =
T is the temperature
So, 

Answer:the answer is moles
Explanation: joules are measurements of energy, and moles Joules
<span>protect it by covering it by lyophilic sol.</span>
Transport of Na+ from a place of low concentration to a place of higher concentration. <u>This is the right answer.</u>
<u />
The sodium-potassium pump is the most common and well-known example of active transport. At the cell membrane, the sodium-potassium pump moves 3 sodium ions out of the cell and two potassium ions into the cell per ATP. Examples of active transport include the uptake of glucose in the human intestine and the uptake of minerals and ions into the root hair cells of plants.
One of the greatest examples of active transport is the movement of calcium ions out of cardiomyocytes. Cells secrete proteins such as enzymes, antibodies, and various other peptide hormones. Amino acids are transported across the intestinal mucosa of the human intestine. The movement of ions or molecules across cell membranes to regions of a higher concentration is assisted by enzymes and requires energy.
Learn more about Active transport here:-brainly.com/question/25802833
#SPJ1
Answer : The reaction rate at
are 
Solution : Given,
Mass of tablet = 1000 mg
Volume of water = 0.200 L
Formula used :

Now we have to calculate the reaction rate at different temperatures and reaction time.




Therefore, the reaction rate at
are 