Answer:
1. y=(x+3)^3. Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1). Zeros: x=2 multiplicity 2; x=1 multiplicity 1.
3. y=(2x+3)(x-1)^2. Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Step-by-step explanation:
1. y=(x+3)^3
![y=0\\ (x+3)^3=0\\ \sqrt[3]{(x+3)^3}=\sqrt[3]{0}\\ x+3=0\\ x+3-3=0-3\\ x=-3](https://tex.z-dn.net/?f=y%3D0%5C%5C%20%28x%2B3%29%5E3%3D0%5C%5C%20%5Csqrt%5B3%5D%7B%28x%2B3%29%5E3%7D%3D%5Csqrt%5B3%5D%7B0%7D%5C%5C%20x%2B3%3D0%5C%5C%20x%2B3-3%3D0-3%5C%5C%20x%3D-3)
Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1)

Zeros: x=2 multiplicity 2; x=1 multiplicity 1
3. y=(2x+3)(x-1)^2

Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Answer:
Adding 12 to the circle area is equal to the square area.
Or
s2 = 12 + A
Where
s = side of square
A = area of circle
So
s2 = 12 + 36
s2 = 48
Solve this for s to get the side length
Answer:
(-2, 3)
Step-by-step explanation:
equation of f(x)
point of intersection of f(x) and x axis - (-4,0)
point of intersection of f(x) and y axis - (0,4)
Equation y = x +4
g(x) = f( kx)
= kx +4
g(-2) = -2
-2k +4= -2
-2k = -2 -4
-2k = -6
k= 3