Answer:
its bc of the way earth spins
Explanation:
Answer:
ΔT = 1.22*10^-3 °C
Explanation:
First, you calculate the potential energy of the bird when it is at 35 m high. The potential energy is also the mechanical energy of the bird in this case.

m: mass of the bird = 0.75kg
g: gravitational constant = 9.8m/s^2
h: height = 35m

All this energy is given to the water. You use the following formula in order to calculate the change in temperature:

m: mass of the water = 50kg
c: specific heat of water = 4186 J/kg°C
Q is equal to U (potential energy of the bird) because the bird gives all its energy to water. By doing ΔT the subject of the formula you obtain:

hence, the maximum rise in temperature is 0.00122 °C
Answer: option B is correct
Explanation:
Answer:
Approximately
, assuming that
.
Explanation:
Let
denote the time required for the package to reach the ground. Let
and
denote the initial and final height of this package.
.
For this package:
- Initial height:
. - Final height:
(the package would be on the ground.)
Solve for
, the time required for the package to reach the ground after being released.
.
.
Assume that the air resistance on this package is negligible. The horizontal ("forward") velocity of this package would be constant (supposedly at
.) From calculations above, the package would travel forward at that speed for about
. That corresponds to approximately:
.
Hence, the package would land approximately
in front of where the plane released the package.