1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DENIUS [597]
3 years ago
13

What is the acceleration due to gravity on earth?

Physics
1 answer:
Mademuasel [1]3 years ago
8 0
The acceleration due to gravity is approximately 32 ft/s^2 or 9.81 m/s^2 on the earth's surface at sea level.

hope this helps :)
You might be interested in
If the attacking team sends the ball out-of-bounds over a goal line, what is the next play?
dusya [7]
A goal kick will take place if the ball is not inside of the posts but if the ball bounces back from inside the frame it is definitely a goal
6 0
3 years ago
A car accelerates from 30 ft/s to 90 ft/ sec in 6 seconds
Softa [21]

Its acceleration is 10ft/ sec

7 0
3 years ago
Two electrons are initially at rest separated by a distance of 2nm. At time t=0, they start to move apart due to Coulombic repul
Gnom [1K]

Answer:

t=2.5\times 10^{-14}\ s

Explanation:

We know that charge on electron

q=1.6\times 10^{-19}\ C

r= 2 nm

We know that force between two charge given

F=K\dfrac{Q_1Q_2}{r^2}

Now by putting the value

F=9\times10^9\dfrac{1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(2\times 10^{-9})^2}

F=5.67\times 10^{-11}\ N

We know that mass of electron

The mass of electron

m=9.1\times 10^{-31}\ kg

F= m a

a= Acceleration of electron

a= F/m

a=\dfrac{5.67\times 10^{-11}}{9.1\times 10^{-31}}\ m/s^2

a=6.2\times 10^{19} m/s^2

S=ut+\dfrac{1}{2}at^2

initial velocity given that zero ,u=0

20\times 10^{-9}=\dfrac{1}{2}\times 6.2\times 10^{19} t^2

t=\sqrt {\dfrac{40\times 10^{-9}}{6.2\times 10^{19}}}

t=2.5\times 10^{-14}\ s

3 0
3 years ago
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr > Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
3 years ago
If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from th
Sladkaya [172]

Answer:

To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.

Explanation:

The emissive power of a light bulb can be given by the following formula:

E = σεAT⁴

where,

E = Power Input or Emissive Power

σ = Stefan-Boltzmann constant

ε = Emissivity

A = Area

T = Absolute Temperature

Therefore,

A = E/σεT⁴

So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.

3 0
3 years ago
Other questions:
  • A hockey puck is set in motion across a frozen pond. if ice friction and air resistance are neglected, the force required to kee
    8·1 answer
  • Which of these actions will increase friction? Check all that apply.
    14·1 answer
  • Under what conditions is the conservation of momentum applicable
    7·1 answer
  • Convert
    7·1 answer
  • The Hubble Space Telescope orbits the Earth at an approximate altitude of 612 km. Its mass is 11,100 kg and the mass of the Eart
    6·1 answer
  • Which Period 2 element would you expect to have the highest electrical and
    7·1 answer
  • The visible light spectrum ranges between
    15·2 answers
  • A block with mass m = 0.2 kg oscillates with amplitude A = 0.3 m at the end of a spring with force constant k = 12 N/m on a fric
    8·1 answer
  • The velocity of a particle is given by v=20t² - 100t + 50, where v is in meters per second and t is in seconds. Evaluate the vel
    13·2 answers
  • How fast must a train accelerates from rest to cover 518 m in the first 7.48 s?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!