Answer:
Explanation:
(a) The force of gravity is called an attractive force because it is the force (although weak) in which a planetary body or matter uses to attract an object towards itself.
(b) Yes, it does and the formula for force of gravity between any two object is
F = G
where m1 and m2 are masses of the first and second object respectively
r is the distance between the center of the two masses
G is the gravitational constant
1. Dump the container out.
2. Sift the large items out until the sugar and gravel is by itself.
3. Continue separating the other items.
Answer:
(a): The frequency received by the observers is f'= 138,062.28 Hz.
(b): When the plane flies directly away from them, they receive a frequency of f'= 1772.46 Hz.
Explanation:
Vf= 333.33 m/s
Vo= 0 m/s
V= 342 m/s
f= 3500 Hz
(a) f' = f * ( V / (V - Vf) )
f'= 138062.28 Hz
(b) f'= f* ( V / (V - (- Vf) )
f'= 1772.46 Hz
So the force that the gymnast with a mass m=45 kg, has to exert against the ground to stop if her acceleration is a=8*g, where g=9.81 m/s², can be obtained from the Newtons second law: F=m*a, where F is the force, m is the mass and a is acceleration.
F=m*a=m*8*g=45*8*9.81=3531.6 N.
So the force that a gymnast has to exert on the mat in order to stop is F=3531.6 N.