Answer:
Thermal Power = 460W
Explanation:
From Stephan-Boltzmann Law Formula;
P = єσT⁴A
Where,
P = Radiation energy
σ = Stefan-Boltzmann Constant
T = absolute temperature in Kelvin
є = Emissivity of the material.
A=Area of the emitting body
Now, σ = 5.67 x 10^(-8)
є = 0.6
Temperature = 30°C and coverting to kelvin = 30 + 273 = 303K
Area ; since we are to consider the sides of the human body as 2m and 0.8m,thus area = 2 x 0.8 = 1.6
Thus thermal power = 0.6 x 5.67 x 10^(-8) x303⁴ x 1.6 = 458. 8W
Normally, we approximate to the nearest 10W. Thus, thermal power is approximately 460W
Answer: Actually three of them are. The ovaries, the uterus and fallopian tubes.
Answer:
3. Step 1; An action potential depolarizes the axon terminal at the presynaptic membrane
2. Step 2; Calcium ions enter the axon terminal
4. Step 3; Acetylcholine is released from storage vesicles by exocytosis
5. Step 4; Acetylcholine binds to receptors on the postsynaptic membrane
1. Step 5; Chemically gated ion channels on the postsynaptic membrane are opened
Explanation:
3. The cholinergic synapse starts at the point of arrival of an electrochemical impulse or action potentials at the synaptic knob of the axon terminal of a presynaptic neuron membrane
2. The arrival of the action potential at the axon terminal causes the calcium ion Ca²⁺ channels to open and Ca²⁺ enters into the synaptic knob, resulting in the fusion of the presynaptic membrane and synaptic vesicles
4. The fusion enables the release into the synaptic cleft of many acetylcholine (ACh) transmitter molecules by exocytosis
5. Some of the ACh are transported across the synaptic cleft and bind to postsynaptic neuron membrane embedded ACh receptors
1. The binding of the ACh neurotransmitter molecules to receptors on the membrane of the dendrites of a neuron it leads to the opening of ion channels
Answer: Fitness, Fun & Friendship
Explanation:
Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m