1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
3 years ago
11

Write each vector in component form lal= 11, 315 degrees

Physics
1 answer:
AysviL [449]3 years ago
7 0
Huh? What are you trying to ask
You might be interested in
A solution is oversaturated with solute. which could be done to decrease the oversaturation?
Grace [21]
<span>A solution is oversaturated with solute. The thing that could be done to decrease the oversaturation is to add more solvent in order to decrease the concentration of the solute. You can also increase the temperature to increase solubility of the solute. Hope this answers the question.</span>
4 0
4 years ago
Read 2 more answers
At t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 26.0 rad/s2 until a cir
Agata [3.3K]

Answer:

a) The total angle of the grinding wheel is 569.88 radians, b) The grinding wheel stop at t = 12.354 seconds, c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

Explanation:

Since the grinding wheel accelerates and decelerates at constant rate, motion can be represented by the following kinematic equations:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

\omega = \omega_{o} + \alpha \cdot t

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

Where:

\theta_{o}, \theta - Initial and final angular position, measured in radians.

\omega_{o}, \omega - Initial and final angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

Likewise, the grinding wheel experiments two different regimes:

1) The grinding wheel accelerates during 2.40 seconds.

2) The grinding wheel decelerates until rest is reached.

a) The change in angular position during the Acceleration Stage can be obtained of the following expression:

\theta - \theta_{o} = \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

If \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\theta-\theta_{o} = \left(25\,\frac{rad}{s} \right)\cdot (2.40\,s) + \frac{1}{2}\cdot \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)^{2}

\theta-\theta_{o} = 134.88\,rad

The final angular angular speed can be found by the equation:

\omega = \omega_{o} + \alpha \cdot t

If  \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\omega = 25\,\frac{rad}{s} + \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)

\omega = 87.4\,\frac{rad}{s}

The total angle that grinding wheel did from t = 0 s and the time it stopped is:

\Delta \theta = 134.88\,rad + 435\,rad

\Delta \theta = 569.88\,rad

The total angle of the grinding wheel is 569.88 radians.

b) Before finding the instant when the grinding wheel stops, it is needed to find the value of angular deceleration, which can be determined from the following kinematic expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

The angular acceleration is now cleared:

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s} and \theta-\theta_{o} = 435\,rad, the angular deceleration is:

\alpha = \frac{ \left(0\,\frac{rad}{s}\right)^{2}-\left(87.4\,\frac{rad}{s} \right)^{2}}{2\cdot \left(435\,rad\right)}

\alpha = -8.780\,\frac{rad}{s^{2}}

Now, the time interval of the Deceleration Phase is obtained from this formula:

\omega = \omega_{o} + \alpha \cdot t

t = \frac{\omega - \omega_{o}}{\alpha}

If \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s}  and \alpha = -8.780\,\frac{rad}{s^{2}}, the time interval is:

t = \frac{0\,\frac{rad}{s} - 87.4\,\frac{rad}{s} }{-8.780\,\frac{rad}{s^{2}} }

t = 9.954\,s

The total time needed for the grinding wheel before stopping is:

t_{T} = 2.40\,s + 9.954\,s

t_{T} = 12.354\,s

The grinding wheel stop at t = 12.354 seconds.

c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

4 0
4 years ago
A car with mass 950 kg and a speed of 16 m/s approaches an intersection. A 1300 kg minivan traveling at 21 m/s is heading for th
Alex73 [517]

Answer:

V_f = 13.8863 \angle 60.89\°

Explanation:

Our values are,

m_1 = 950Kg\\v_1 = 16m/s \\m_2 =1300Kg\\v_2 = 21m/s

We have all the values to apply the law of linear momentum, however, it is necessary to define the two lines in which the study will be carried out. Being an intersection the vehicle of mass m_1 approaches through the X axis, while the vehicle of mass m_2 approaches by the y axis. In the collision equation on the X axis, we despise the velocity of object 2, since it does not come in this direction.

m_1v_1=(m_1+m_2)v_fcos\theta

For the particular case on the Y axis, we do the same with the speed of object 1.

m_2v_2=(m_1+m_2)v_fsin\theta

By taking a final velocity as a component, we can obtain the angle between the two by relating the equations through the tangent

Tan\theta = \frac{m_2v_2}{m_1v_1}\\Tan\theta = \frac{1300*21}{950*16}\\\theta = tan^{-1}(1.7960)\\\theta = 60.89\°

Replacing in any of the two functions, given above, we will find the final speed after the collision,

(950)(16)=(950+1300)V_fcos(60.89)

V_f= \frac{(950)(16)}{(950+1300)cos(60.89)}

V_f = 13.8863 \angle 60.89\°

8 0
3 years ago
Why does earth have the youngest surface of all the terrestrial planets today?
kotykmax [81]

Answer:

Its the biggest terrestrial planet as the result of the interior being not able to cool down that much.

its rotates rapidly

Explanation:

the earth planet is not close to the sun,which puts it in the advantage of not loosing water.

8 0
3 years ago
Select the correct answer.
motikmotik

I'm not sure. But it can be A or C.

4 0
4 years ago
Other questions:
  • Select each example of a projectile
    10·2 answers
  • Which of the following changes occurs naturally in a system over time?
    14·1 answer
  • develop an equation with a proportionality constant that describes the relationship between the gravitational force the mass of
    5·1 answer
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    9·1 answer
  • Two different substances, Substance A and Substance B, are in direct contact with each other and are at different temperatures.
    6·2 answers
  • Compare and contrast electric motors and generators.
    7·2 answers
  • A dog walks a distance of 55.5 meters in 120 seconds. What was its speed?
    11·1 answer
  • What does it mean when a mineral has a definite chemical composition? Select 2 choices.
    10·1 answer
  • What elements make up most of the mantle?
    8·2 answers
  • What is the medium for the waves in the photograph?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!