1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
2 years ago
10

PLEASE HELP ASAP!!

Physics
1 answer:
Gwar [14]2 years ago
4 0
The third one.

The nucleus of an atom is made up of protons and neutrons. Protons and neutrons have the same relative mass (rounded to 1). Electrons have an extremely small mass.

Therefore, the particles in the nucleus are more massive than those in the electron cloud.
You might be interested in
A very long insulating cylinder of charge of radius 2.60 cm carries a uniform linear density of 15.0 nC/m . Part A If you put on
fenix001 [56]

Given Information:  

Radius = ra = 2.60 cm = 0.026 m

Density = J = 15.0 nC/m

change in potential difference = ΔV = 200 V

Required Information:  

Distance = d = ?

Answer:

distance = 0.088 m

Explanation:

As we know

ΔV = Vb - Va = J/4πε₀*ln(rb/ra)

Where ra and rb is the point where potential difference is Va and Vb respectively

1/4πε₀ = 9x10⁹ N.m²/C²

We want to find the distance d = rb - ra

ΔV = J/4πε₀*ln(rb/ra)

200 = 9x10⁹*15x10⁻⁹*ln(rb/ra)

200/135 = ln(rb/ra)

1.48 = ln(rb/ra)

taking e on both sides yields

e^(1.48) = rb/ra

4.39 = rb/ra

rb = 4.39*0.026

rb = 0.114 m

Therefore, the required distance is

d = rb - ra

d = 0.114 - 0.026

d = 0.088 m

Therefore, the other probe must be placed 0.088 m from the surface so that the voltmeter reads 200 V

6 0
3 years ago
What is your operational definition for a fast reaction time?
LuckyWell [14K]

Answer:

The ability to react to a certain stimulus with a speedy and effective manner

Explanation:

7 0
3 years ago
What is the acceleration of a vehicle that goes from 70 m/s to a stop in 35 s?
belka [17]
U=70 , v= 0, t=35, a=?
v=u+at
0=70+a(35)
-70=35a
a=-2m/s^2
Decelerate 2ms^-2 or acceleration is -2ms^-2
7 0
3 years ago
If you were to walk at a constant speed 20m/s for 30 seconds, how far would you walk?
lana [24]

Answer:

600m

Explanation:

30×20 at a constant speed is 600m.

6 0
4 years ago
What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?
ArbitrLikvidat [17]

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

4 0
3 years ago
Other questions:
  • A system of two objects has ΔKtot = 6 J and ΔUint = -5 J. Part A How much work is done by interaction forces? Express your answe
    5·1 answer
  • What is the highest pHoney bees beat their wings, making a buzzing sound at a frequency of 2.3 × 102 hertz. What is the period o
    13·1 answer
  • Mrs. Garcia's earth science class conducted an experiment on how Earth absorbed solar radiation. They placed four different shee
    6·2 answers
  • Light travels 300,000,000 m/s, and one year has approximately 32,000,000 seconds. a light year is the distance light travels in
    7·2 answers
  • What causes colour in fireworks
    15·1 answer
  • Alpha particles, each having a charge of +2e and a mass of 6.64 ×10-27 kg, are accelerated in a uniform 0.50 T magnetic field to
    10·1 answer
  • Estimate the mass of water that must evaporate from the skin to cool the body by 0.45 ∘C. Assume a body mass of 95 kg and assume
    10·1 answer
  • PLEASE HELP ASAP!!!!!!!!!!WILL GIVE BRAINLIEST...
    14·2 answers
  • PLEASE HELP ME this is due in 20 mins!!!!!
    9·1 answer
  • Which force causes all objects with mass to attract one another?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!