Answer:
The plane would need to travel at least
(
.)
The
runway should be sufficient.
Explanation:
Convert unit of the the take-off velocity of this plane to
:
.
Initial velocity of the plane:
.
Take-off velocity of the plane
.
Let
denote the distance that the plane travelled along the runway. Since acceleration is constant but unknown, make use of the SUVAT equation
.
Notice that this equation does not require the value of acceleration. Rather, this equation make use of the fact that the distance travelled (under constant acceleration) is equal to duration
times average velocity
.
The distance that the plane need to cover would be:
.
Answer:
12 kgm²
Explanation:
here angular acceleration = 10rad/sec²
torque= 120Nm
moment of inertia=?
we know,
torque= angular acceleration× moment of Inertia
or, moment of inertia = torque/angular acceleration
= 120/10
= 12kgm²
Answer:

Explanation:
In order to calculate the angular momentum of the particle you use the following formula:
(1)
r is the position vector respect to the point (0 , 5.0), that is:
r = 0m i + 5.0m j (2)
p is the linear momentum vector and it is given by:
(3)
the direction of p comes from the fat that the particle is moving along the i + j direction.
Then, you use the results of (2) and (3) in the equation (1) and solve for L:

The angular momentum is -30 kgm^2/s ^k
Answer:
Positive ions, or cations.
Answer:
The angle of reflection is the angle the reflected rays make with a perpendicular line to the reflecting surface.
Explanation:
Reflection It is the change of direction suffered by a luminous ray when hitting the surface of an object. The angle of reflection is that which is formed by the reflected ray and the normal vector to the study surface