1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
13

What is coefficient of thermal conductivity​

Engineering
1 answer:
True [87]3 years ago
7 0

Answer:

<em>The coefficient of thermal conductivity -- is the quantity of heat that is transported through a unit cube of two surfaces of perpendicular distance to each other in a given unit of time when the difference in temperature of the two surfaces is 1°C and its unit is W/m∗K</em>

You might be interested in
______ are an idication that your vehicle may be developing a cooling system problem.
iris [78.8K]

Answer:

The temperature gauge showing that the vehicle has been running warmer or has recently began to have issues from overheating is  an idication that your vehicle may be developing a cooling system problem.

Explanation:

8 0
3 years ago
A debugging process where you, the programmer, pretend you are a computer and step through each statement while recording the va
Ipatiy [6.2K]

Answer:

hand tracing

Explanation:

as a programmer when we pretend  computer in the  debugging process by the step of each statement in recording    

then there value of variable is hand tracing because as The hand tracking feature is the use of hands as an input method      

so while recording value of each variable each step is hand tracing

5 0
3 years ago
A Carnot refrigeration cycle absorbs heat at -12 °C and rejects it at 40 °C. a)-Calculate the coefficient of performance of this
tresset_1 [31]

Answer:

a)COP=5.01

b)W_{in}=2.998 KW

c)COP=6.01

d)Q_R=17.99 KW

Explanation:

Given

T_L= -12°C,T_H=40°C

For refrigeration

  We know that Carnot cycle is an ideal cycle that have all reversible process.

So COP of refrigeration is given as follows

COP=\dfrac{T_L}{T_H-T_L}  ,T in Kelvin.

COP=\dfrac{261}{313-261}

a)COP=5.01

Given that refrigeration effect= 15 KW

We know that  COP=\dfrac{RE}{W_{in}}

RE is the refrigeration effect

So

5.01=\dfrac{15}{W_{in}}

b)W_{in}=2.998 KW

For heat pump

So COP of heat pump is given as follows

COP=\dfrac{T_h}{T_H-T_L}  ,T in Kelvin.

COP=\dfrac{313}{313-261}

c)COP=6.01

In heat pump

Heat rejection at high temperature=heat absorb at  low temperature+work in put

Q_R=Q_A+W_{in}

Given that Q_A=15KW

We know that  COP=\dfrac{Q_R}{W_{in}}

COP=\dfrac{Q_R}{Q_R-Q_A}

6.01=\dfrac{Q_R}{Q_R-15}

d)Q_R=17.99 KW

5 0
4 years ago
H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 30 m/s and the mass flow rate
Colt1911 [192]

Answer:

The flow velocity at outlet is approximately 37.823 meters per second.

The inlet radius of the nozzle is approximately 0.258 meters.

Explanation:

A conical nozzle is a steady state device used to increase the velocity of a fluid at the expense of pressure. By First Law of Thermodynamics, we have the energy balance of the nozzle:

Energy Balance

\dot m \cdot \left[\left(h_{in}+\frac{v_{in}^{2}}{2} \right)-\left(h_{out}+\frac{v_{out}^{2}}{2} \right)\right]= 0 (1)

Where:

\dot m - Mass flow, in kilograms per second.

h_{in}, h_{out} - Specific enthalpies at inlet and outlet, in kilojoules per second.

v_{in}, v_{out} - Flow speed at inlet and outlet, in meters per second.

It is recommended to use water in the form of superheated steam to avoid the appearing of corrosion issues on the nozzle. From Property Charts of water we find the missing specific enthalpies:

Inlet (Superheated steam)

p = 2000\,kPa

T = 300\,^{\circ}C

h_{in} = 3024.2\,\frac{kJ}{kg}

\nu_{in} = 0.12551\,\frac{m^{3}}{kg}

Where \nu_{in} is the specific volume of water at inlet, in cubic meters per kilogram.  

Outlet (Superheated steam)

p = 600\,kPa

T = 160\,^{\circ}C

h_{out} = 2758.9\,\frac{kJ}{kg}

If we know that \dot m = 50\,\frac{kJ}{kg}, h_{in} = 3024.2\,\frac{kJ}{kg}, h_{out} = 2758.9\,\frac{kJ}{kg} and v_{in} = 30\,\frac{m}{s}, then the flow speed at outlet is:

35765-25\cdot v_{out}^{2} = 0 (2)

v_{out} \approx 37.823\,\frac{m}{s}

The flow velocity at outlet is approximately 37.823 meters per second.

The mass flow is related to the inlet radius (r_{in}), in meters, by this expression:

\dot m = \frac{\pi \cdot v_{in}\cdot r_{in}^{2} }{\nu_{in}} (3)

If we know that \dot m = 50\,\frac{kJ}{kg}, v_{in} = 30\,\frac{m}{s} and \nu_{in} = 0.12551\,\frac{m^{3}}{kg}, then the inlet radius is:

r_{in} = \sqrt{\frac{\dot m\cdot \nu_{in}}{\pi\cdot v_{in}}}

r_{in}\approx 0.258\,m

The inlet radius of the nozzle is approximately 0.258 meters.  

7 0
3 years ago
You plan to install an active, liquid-based solar heating system for hot water. There are four candidate collector systems. Your
olchik [2.2K]

Solution:

The given formula,

x=F_{R} U_{L} \times \frac{P l}{F R_{1}} \times\left(T_{r e f}-\bar{T}_{a}\right) \Delta t \times \frac{A_{c}}{L}

y=F_{R}(\tau \alpha)_{n} x \frac{F_{R}^{\prime}}{F_{R}} \times \frac{(\bar{\tau} d)}{(T d)_{n}} \times \bar{H}_{T} N \times \frac{A C}{L}

\frac{x}{y}=\frac{ u_{L} \times\left(T_{x t}-\bar{T}_{a}\right) \times \Delta t}{\left(\tau_{x}\right)_{h} \times\left(\frac{\bar{\tau}_{d}}{\left.| \tau_{d}\right)_{n}}\right) \times \bar{H}+N}

From the table,

1) \(\quad x=2 \cdot 87, \quad y=0.96\)\\\(\frac{x}{y}=\frac{2187}{0.96}\)22895\\\\2) \(x=3 \cdot 466 \cdot y=6 \cdot 998\)\\\(\frac{x}{y}=\frac{3 \cdot 466}{0.898}\)\(=3 \cdot 4729\)

3\(x=3 \cdot 229, y=1 \cdot 08\)\\\(\frac{x}{x}=\frac{3 \cdot 229}{1 \cdot 08}\)\\=2.9898\)\\\\4) \(x=6.525, y=1.094\)\\\(\frac{x}{y}=\frac{5.625}{1.094}\)\\=5.0502

8 0
4 years ago
Other questions:
  • The working section of a transonic wind tunnel has a cross-sectional area 0.5 m2. Upstream, where the cross-section area is 2 m2
    10·1 answer
  • The pressure forces on a submersed object will be (A)- Tangential to the objects body (B)- Parallel (C)- Normal (D)- None of the
    10·1 answer
  • A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s)
    14·1 answer
  • In a surface grinding operation, the wheel diameter = 8.0 in, wheel width = 1.0 in, wheel speed = 6000 ft/min, work speed = 40 f
    9·1 answer
  • Air enters a counterflow heat exchanger operating at steady state at 27 C, 0.3 MPa and exits at 12 C. Refrigerant 134a enters at
    5·1 answer
  • 1) What output force (Fout) is produced if the lever arm length (rout) is 100 mm?
    13·2 answers
  • While recharging a refrigerant system, the charging stops before the required amount of refrigerant has been inserted. What shou
    8·1 answer
  • 3. What is special about beryllium-copper alloy tools?
    6·2 answers
  • Explain the S.A. co-ordinate system used in surveying
    9·1 answer
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!