1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
11

Injection melding is a process that

Engineering
1 answer:
Bumek [7]3 years ago
5 0

Answer:

mark brainliest :)

Explanation:

Injection Molding. Injection molding is the most commonly used manufacturing process for the fabrication of plastic parts. ... The plastic is melted in the injection molding machine and then injected into the mold, where it cools and solidifies into the final part.

Materials: Thermoplastics

You might be interested in
I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
nalin [4]

Answer:

"Biofuels"

Explanation:

I don't know if this counts but I guess it's not one of those.

6 0
2 years ago
Read 2 more answers
The atmosphere within a room is at 70 °F dry-bulb temperature, 50 percent degree of saturation, and 14.696 psia pressure. The in
Gre4nikov [31]

Answer:

Given that the temperature of the window is below the dew point it will condensate.

Explanation:

A psychrometric chart (like the one attached) will give you the information needed. This chart is for 14.696 psia.

On the bottom horizontal axes you have the dry-bulb temperature, in this case 70°F, going up from this point you can reach the 50% relative humidity curve (red point on chart), going horizontally from this point to the 100% relative humidity you get the dew point temperature (the point at which moisture will condensate) (blue point on chart). In this case the dew point is 50°C. Given that the temperature of the window is below the dew point it will condensate.

6 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
A house that was heated by electric resistance heaters consumed 1500 kWh of electric
gladu [14]

Answer:

2.5=1500/Whp=> Whp=600 kWh

delWgain=1500-600=900 kWh

Money saved= 900* 6tk*=5400 tk

5 0
3 years ago
The moisture content in air (humidity) is measured by weight and expressed in pounds or ____________________.
VikaD [51]

Moisture content is measured in terms of pounds of water per pound of air (lb water/lb air) or grains of water per pound of air (gr. of water/lb air).

Hope this helps❤

3 0
2 years ago
Other questions:
  • Another focus of effective communication, according to Stephen Covey, is ensuring that:
    10·2 answers
  • Determine displacement (in) of a 1.37 in diameter steel bar, which is 50 ft long under a force of 27,865 lb if elasticity modulu
    5·1 answer
  • Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD),
    14·1 answer
  • If the electric field just outside a thin conducting sheet is equal to 1.5 N/C, determine the surface charge density on the cond
    9·1 answer
  • Assume that we have a BS with a 6-dB antenna gain and an MS with antenna gain of 2 dB, at heights 10 m and 1.5 m, respectively,
    5·1 answer
  • The following median grain size data were obtained during isothermal liquid phase sintering of an 82W-8Mo-8Ni-2Fe alloy. What is
    15·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • if when you put your shirt in your pants, your shirt is tucked, does that mean when your shirt is over your pants, your pants ar
    6·2 answers
  • Report of invertor to convert 12 volt to 220 volt.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!