Answer:
a. At pH 9, the product, p-nitrophenol, will be ionized, the solution will appear yellow in color, and thus can be monitored at the wavelength of maximum absorption for the phenolate ion which is 400nm
Explanation:
In alkaline phosphatase assay, the hydrolysis of p nitrophenyl phosphate to p nitrophenol happens. When the ph is 9, the product which is p nitrophenol would undergo ionization. The solution is going to appear to be of yellow and it can be monitored at a wavelength for maximum absorption of phenolate ions at 400nm.
Option A is the answer to the question.
Answer:Maintaining resting potential and returning to resting potential after the hyperpolarization phase of an action potential
Explanation:TOXINS are chemical substances which are known to be POISONOUS produced with living organisms that causes harm to other organisms, examples include Venom from snakes which when a person is bitten by a Snake it will possibly lead to death if not adequate treated.
HYPERPOLARIZATION is a term that explains the change in membrane potential due to toxin,it make the membrane more electronegative. When the toxin has hyped the level of Sodium-Potassium level returning to a rest state will be most affected.
The answer is:
a. 0.712 M
b. 0.210 M
c. 0.336 M
Molarity is a measure of the concentration of solute in a solution.
It can be expressed as moles of solute ÷ volume of solution:
c = n ÷V
where:
c - concentration of solute,
n - moles of solute
V - volume of solution
n can be expressed as:
<span>n = m ÷ Mr
</span>where:
<span>n - moles of solute
</span>m - mass of solute
Mr - relative molecular mass
a. We know volume:
V = 289.2 mL = 0.2892 L
We need n and c.
n = m ÷ Mr
m = 15.4 g
Mr (<span>KCl) = 74.55 g/mol
n = </span>15.4 g ÷ <span>74.55 g/mol
n = 0.206 mol</span>
Thus,
c = 0.206 mol ÷ <span>0.2892 L
c = 0.712 mol/L = 0.712 M
</span>b. We know volume:
V = 0.614 L
We need n and c.
n = m ÷ Mr
m = 14.4 g
Mr (CaCl₂<span>) = 110.98 g/mol
n = </span>14.4 g ÷ <span>110.98 g/mol
n = 0.129 mol</span>
Thus,
c = 0.129 mol ÷ <span>0.614 L
c = 0.210 mol/L = 0.210 M
</span>
c. We can use formula:
m₁V₁ = m₂V₂
<span>m₁ = 3 M
</span><span>V₁ = 28 mL= 0.028 L
</span><span>m₂ = ?
</span><span>V₂ = 0.250 L
</span>Thus:
3 M × 0.028 L = m₂× <span>0.250 L
</span> m₂ = 0.336 M
The answer for your question is <span>No. This is because in given conditions, it is not the most stable form of oxygen's element. It will not equate into zero because there will be charge remained after balancing the equation.
</span>