At the anode, half-cell oxidation occurs in a voltaic cell.
<h3>Voltaic Cell Principle</h3>
A voltaic cell generates electricity due to the Gibbs free energy of spontaneous redox processes occurring inside the cell, which is the basis for the voltaic cell's operating principle.
Two half-cells plus a salt bridge make up the voltaic cell. An electrolyte-immersed metallic electrode is present on each side of the cell. These two half-cells are wired together to form a connection to a voltmeter.
<h3>Voltaic Cell Parts</h3>
- Copper makes comprises the cathode of a photovoltaic cell. This electrode serves as the cell's positive terminal, where reduction takes place.
- Anode: Zink metal makes up this electrode. It creates the cell's negative electrode, where oxidation takes place.
- Oxidation and reduction are divided into two discrete parts in two half-cells.
- Salt Bridge: It contains the electrolytes needed to finish the circuit in the voltaic cell.
- The flow of electrons between the electrodes occurs via the external circuit.
Learn more about Voltaic cells here:-
brainly.com/question/27908270
#SPJ4
Answer:
See explanation
Explanation:
This conversion must go through a sequence of steps as i have shown in the image attached to this answer.
The acetone is converted to propan-2-ol using LiAlH4, THF and acid. The propan-2-ol may be converted to propene by E2 elimination. Addition of HBr yields 2-bromo propane.
The Wurtz reaction converts 2-bromo propane to 2,3- dimethyl butane. This can be brominated in the presence of light to yield 3-bromo-2,3-dimethyl butane. Elimination of HBr using a base leads to the formation of the required product as shown.