a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :

Answer:
Break up the soil to increase the number of pores should be your answer.
Explanation:
If you do that it will increase the amount of water in the plant.
Answer:
C14H30 -----> C7H14 + C2H4 +C5H10
Explanation:
The green and black symbols refer to atoms, that make up the molecule of water, more specifically you can say that the 2 Hydrogen atoms are the black ones found outside, while the central atom, that is also green would be oxygen.
Endothermic reactions, on the other hand, absorb heat and/or light from their surroundings. For example, decomposition reactions are usually endothermic. In endothermic reactions, the products have more enthalpy than the reactants. Thus, an endothermic reaction is said to have a positive<span> enthalpy of reaction. This means that the energy required to break the bonds in the reactants is more than the energy released when new bonds form in the products; in other words, the reaction requires energy to proceed.</span>