Answer:
There are no real solutions.
Step-by-step explanation:
There are 3 options.
2 real solutions: This happens if in the graph, each arm intersects the x-axis, this means that there are two different values of x such that the equation:
a*x^2 + b*x + c
is equal to zero.
Another way to see this, is if the determinant:
b^2 - 4*a*c
is larger than zero.
1 real solution: This happens when the vertex of the graph intersects the x-axis. This means that there is a single value of x such that:
a*x^2 + b*x + c
is equal to zero.
Another way to see this is if the determinant:
b^2 - 4*a*c
is larger equal zero.
No real solution: if in the graph we can not see any intersection of the x-axis, then we do not have real solutions (only complex ones).
Another way to see this is if the determinant:
b^2 - 4*a*c
is smaller than zero.
Now that we know this, let's look at the graph.
We can see that the vertex is below the x-axis, and the arms of the graph go downwards. So the arms will never intersect the x-axis (and neither the vertex).
So the graph does not intersect the x-axis at any point, which means that there are no real solutions for the quadratic equation.
The correct answer would be "none"