1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
docker41 [41]
4 years ago
15

Determine which relation is a function. Question 13 options: a) {(3, 0), (– 2, – 2), (7, – 2), (– 2, 0)} b) c) y = 15x + 2 y = 1

5 x + 2 d)
Mathematics
1 answer:
antiseptic1488 [7]4 years ago
5 0

Answer:

x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5

Step-by-step explanation:Solving for x. Want to solve for y or solve for d instead?

1 Simplify  0-20−2  to  -2−2.

3,-2,-27,-2-2,02y=1,5x+2d3,−2,−27,−2−2,02y=1,5x+2d

2 Simplify  -2-2−2−2  to  -4−4.

3,-2,-27,-4,02y=1,5x+2d3,−2,−27,−4,02y=1,5x+2d

3 Subtract 2d2d from both sides.

3-2d,-2-2d,-27-2d,-4-2d,02y-2d=1,5x3−2d,−2−2d,−27−2d,−4−2d,02y−2d=1,5x

4 Divide both sides by 1,51,5.

\frac{3-2d}{1},5,\frac{-2-2d}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2−2d

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−4−2d

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

5 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−4−2d

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

6 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

7 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

8 Simplify  \frac{3-2d}{1}

​1

​

​3−2d

​​   to  (3-2d)(3−2d).

3-2d,5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

9 Simplify  \frac{-2(1+d)}{1}

​1

​

​−2(1+d)

​​   to  (-2(1+d))(−2(1+d)).

3-2d,5,-2(1+d),5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

10 Simplify  \frac{-27-2d}{1}

​1

​

​−27−2d

​​   to  (-27-2d)(−27−2d).

3-2d,5,-2(1+d),5,-27-2d,5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

11 Simplify  \frac{-2(2+d)}{1}

​1

​

​−2(2+d)

​​   to  (-2(2+d))(−2(2+d)).

3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,

​1

​

​2(y−d)

​​ ,5=x

12 Simplify  \frac{2(y-d)}{1}

​1

​

​2(y−d)

​​   to  (2(y-d))(2(y−d)).

3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5=x

13 Switch sides.

x=3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5

Done

You might be interested in
-5s-5x+5 s 50<br> solve this
Bingel [31]

-5s-5x+5s+50     Combine like terms

5x+50

8 0
3 years ago
Read 2 more answers
Use the substitution method to solve the system of equations. Choose the correct ordered pair.
balandron [24]
Here you have 2 linear equations and are to solve this system.  Both equations have already been solved for y, so you can set one of them = to the other one:

-2x+11 = -3x+21.

Then 3x-2x = 21 - 11, or         x = 10 (answer)

Find y by subst. x = 10 into either of the given equations.

Solution is then (10, ? )
7 0
4 years ago
Describe fully transformation that maps triangle A onto triangle B
vitfil [10]

Answer:

Reflection on the x axis

Step-by-step explanation:

7 0
3 years ago
An automobile company wants to determine the average amount of time it takes a machine to assemble a car. A sample of 40 times y
aksik [14]

Answer:

A 98% confidence interval for the mean assembly time is [21.34, 26.49] .

Step-by-step explanation:

We are given that a sample of 40 times yielded an average time of 23.92 minutes, with a sample standard deviation of 6.72 minutes.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                               P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample average time = 23.92 minutes

             s = sample standard deviation = 6.72 minutes

             n = sample of times = 40

             \mu = population mean assembly time

<em> Here for constructing a 98% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation. </em>

<u>So, a 98% confidence interval for the population mean, </u>\mu<u> is; </u>

P(-2.426 < t_3_9 < 2.426) = 0.98  {As the critical value of z at 1%  level

                                               of significance are -2.426 & 2.426}  

P(-2.426 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.426) = 0.98

P( -2.426 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 2.426 \times {\frac{s}{\sqrt{n} } } ) = 0.98

P( \bar X-2.426 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.426 \times {\frac{s}{\sqrt{n} } } ) = 0.98

<u>98% confidence interval for</u> \mu = [ \bar X-2.426 \times {\frac{s}{\sqrt{n} } } , \bar X+2.426 \times {\frac{s}{\sqrt{n} } } ]

                                     = [ 23.92-2.426 \times {\frac{6.72}{\sqrt{40} } } , 23.92+2.426 \times {\frac{6.72}{\sqrt{40} } } ]  

                                    = [21.34, 26.49]

Therefore, a 98% confidence interval for the mean assembly time is [21.34, 26.49] .

7 0
3 years ago
What is them gcf or 18,42,24
Katarina [22]

Answer:

6

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • IQ scores are normally normally distributed with a mean of 100 and center deviation of 15 if one person is randomly selected wha
    13·1 answer
  • A total of 120,000 votes were cast for 2 opposing candidates, Garcia and Pérez. If Garcia won by a ratio of 5 to 3, what was the
    10·1 answer
  • Whats does v equal in math... v=?
    12·1 answer
  • A bank wishes to invest a $100, 000 trust fund in three sources: bonds paying 8%; certificates of deposit paying 7%; and first m
    6·1 answer
  • !HURRY! Trey evaluated 12/15 + 1/10 and got an answer of 13/25. Which statement is true about his answer?
    15·1 answer
  • Does anyone know the answers to these?
    5·2 answers
  • Find the common ratio of 80, 20, 5
    13·1 answer
  • PLEASE NEED HELP ASAP IM GIVING ALL MY POINTS THIS SHOULD BE A EASY QUESTION.​
    14·1 answer
  • 4x+4y=4 3x+y=10 solve by elimination
    14·1 answer
  • Please help me ASAP
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!