Answer:
I cant see the entire question
Step-by-step explanation:
The points you found are the vertices of the feasible region. I agree with the first three points you got. However, the last point should be (25/11, 35/11). This point is at the of the intersection of the two lines 8x-y = 15 and 3x+y = 10
So the four vertex points are:
(1,9)
(1,7)
(3,9)
(25/11, 35/11)
Plug each of those points, one at a time, into the objective function z = 7x+2y. The goal is to find the largest value of z
------------------
Plug in (x,y) = (1,9)
z = 7x+2y
z = 7(1)+2(9)
z = 7+18
z = 25
We'll use this value later.
So let's call it A. Let A = 25
Plug in (x,y) = (1,7)
z = 7x+2y
z = 7(1)+2(7)
z = 7+14
z = 21
Call this value B = 21 so we can refer to it later
Plug in (x,y) = (3,9)
z = 7x+2y
z = 7(3)+2(9)
z = 21+18
z = 39
Let C = 39 so we can use it later
Finally, plug in (x,y) = (25/11, 35/11)
z = 7x+2y
z = 7(25/11)+2(35/11)
z = 175/11 + 70/11
z = 245/11
z = 22.2727 which is approximate
Let D = 22.2727
------------------
In summary, we found
A = 25
B = 21
C = 39
D = 22.2727
The value C = 39 is the largest of the four results. This value corresponded to (x,y) = (3,9)
Therefore the max value of z is z = 39 and it happens when (x,y) = (3,9)
------------------
Final Answer: 39
Answer:
-53, -24, 0, 18
Step-by-step explanation:
Hope this helps :)
Answer:

Step-by-step explanation:
Vertically Opposite Angles are equal..
so,

All of these sets meet the requirements of the triangle inequality. The sum of any two numbers in the set is greater than the third one. (You really only need to check that the sum of the smallest two is greater than the largest.)
It can help to resolve the numbers that are only indicated as to value.
√13 ≈ 3.606
2√10 ≈ 6.325
_____
Your comparisons can be ...
2 + 3 = 5 > 3.606 . . . is a triangle
5 + 5 = 10 > 6.325 . . . . . . is a triangle
5 + 12 = 17 > 15 . . . . . . . . is a triangle