Answer:
82.1 km
Explanation:
We need to resolve each displacement along two perpendicular directions: the east-west direction (let's label it with x) and the north-south direction (y). Resolving each vector:

Vector B is 48 km south, so:

Finally, vector C:

Now we add the components along each direction:

So, the resultant (which is the distance in a straight line between the starting point and the final point of the motion) is

After the initial push, the rock will keep moving forever at constant velocity (constant speed in a straight line)
Explanation:
We can answer this question by using Newton's first law of motion:
"An object at rest (or in motion at constant velocity) will stay at rest (or will keep moving at constant velocity) unless acted upon unbalanced forces" (Law of inertia)
In this problem, we have a rock in a place very far from any force that can act on it. This means that there are no unbalanced force acting on it, so the rock will keep its state of motion forever.
In this situation, the rock is initially thrown by the astronaut. After the initial push, which accelerates the rock up to a certain velocity, there will be no more forces acting on the rock. This means that the rock will continue moving at a constant velocity forever, so at a constant speed in a straight line.
Learn more about Newton laws of motion:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
Slip and slide covered with oil
INDUCTION MOTOR:-
Speed:-Less speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control
Reliability:-Waste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation
Power density:-Induction produced by squirrel cage rotor inherently limits power density
Accuracy:-Flux vector and field-oriented control allows for some of accuracy of servos
Cost:-Relatively modest initial cost; higher operating costs
PERMANENT MAGNET MORTOR:-
speed:-VFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range
Reliability:-Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments.
power density:-Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types.
Accuracy:-Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors
<span>Cost:-Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly</span>
Spherical because it’s more like clouds