Answer:
The charge-to-mass ratio of the particle is 5.7 × 10⁵ C/kg
Explanation:
From the formulae
F = qvB and F = mv²/r
Where F is Force
q is charge
v is speed
B is magnetic field strength
m is mass
and r is radius
Then,
qvB = mv²/r
qB = mv/r
We can write that
q/m = v/rB ---- (1)
Also
From Electric force formula
F = Eq
Where E is the electric field
and magnetic force formula
F = Bqv
Since, electric force = magnetic force
Then, Eq = Bqv
E = Bv
∴ v = E/B
Substitute v = E/B into equation (1)
q/m = (E/B)/rB
∴ q/m = E/rB²
(NOTE: q/m is the charge to mass ratio)
From the question,
E = 3.10 ×10³ N/C
r = 4.20 cm = 0.0420 m
B = 0.360 T
Hence,
q/m = 3.10 ×10³ / 0.0420 × (0.360)²
q/m = 569517.9306 C/kg
q/m = 5.7 × 10⁵ C/kg
Hence, the charge-to-mass ratio of the particle is 5.7 × 10⁵ C/kg.
Polarization is the action of restricting the vibrations of a transverse wave, especially light, wholly or partially to one direction .
Explanation:
Bases taste bitter, feel slippery, and conduct electricity when dissolved in water. Indicator compounds such as litmus can be used to detect bases. Bases turn red litmus paper blue. The strength of bases is measured on the pH scale.
By definition, a halo is a part of a galaxy wherein it mainly consists of scattered stars forming bulges having a significantly spherical structure. In addition, the galactic structure is commonly made up of old and metal-rich stars forming clouds of gas and dirt at the spirals of a galaxy.
Answer:
One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink. ... In fact, submarines dive below the surface of the water by emptying their ballast tanks.
HOPE IT HELPS