Next term = 10
You add 3 to each term to get the next
1+3 = 4
4+3 = 7
7+3 = 10
etc etc
The domain of the sequence is 1,2,3,4,... basically the set of positive whole numbers. This is known as the set of natural numbers or counting numbers. We don't include 0. The domain is the set of possible inputs for 'n' in the formula mentioned below.
The range is the sequence of values shown.
The formula to generate the sequence is
an = 3n-2
as shown by these steps below
an = a1 + d(n-1)
an = 1 + 3(n-1)
an = 1+3n-3
an = 3n-2
To get any term you want, plug in a whole number for n. For example, plug in n = 4 to get...
an = 3n-2
a4 = 3*4-2
a4 = 12-2
a4 = 10
Showing that the fourth term is 10 as found earlier above.
Answer:

Step-by-step explanation:
To find x₁ and x₂ :
![\left[\begin{array}{ccc}-4&1\\5&4\\\end{array}\right] \times \left[\begin{array}{ccc}x_1\\x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%261%5C%5C5%264%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%5C%5C-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step 1
Multiply first 2 x 2 matrix with 2 x 1 vector, we get
![\left[\begin{array}{ccc}-4x_1&+ x_2\\5x_1&+ 4x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4x_1%26%2B%20%20x_2%5C%5C5x_1%26%2B%20%204x_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%5C%5C-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5Cend%7Barray%7D%5Cright%5D)
Step 2
Add the 2 x 1 matrices on LHS, we get
![\left[\begin{array}{ccc}-4x_1&+x_2&+11\\5x_1&+4x_2&-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4x_1%26%2Bx_2%26%2B11%5C%5C5x_1%26%2B4x_2%26-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5Cend%7Barray%7D%5Cright%5D)
Step 3,
we get

and

Step 4,
Simplify, we get

Step 5,
multiply eqn(1) by 4
we get

Step 6,
eqn (2) - eqn(3)
we get

substituting in eqn (1), we get

so, we get

Therefore

The answer is 3.75 or 15/4 or 3 3/4