Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
Answer:
Hey mate here's your answer.....
Step-by-step explanation:
Mathematics is a subject where you study more about numbers and daily life applications.
hope its helps you,
follow me....
Answer:
4÷7 is 0.571428571428571
= 0.57
Step-by-step explanation:
Hope this helps!!!
Answer:
-56/9
Step-by-step explanation:
By Vieta's formulas,
$r + s = -\frac{4}{3}$ and $rs = \frac{12}{3} = 4.$ Squaring the equation $r + s = -\frac{4}{3},$ we get
$r^2 + 2rs + s^2 = \frac{16}{9}.$ Therefore,
$r^2 + s^2 = \frac{16}{9} - 2rs = \frac{16}{9} - 2 \cdot 4 = -\frac{56}{9}}$
Yes because when you have y = -3x²-7x -6 it is just the same as f(x) = -3x² -7x - 6