Answer:
d = 4180.3m
wavelengt of sound is 0.251m
Explanation:
Given that
frequency of the sound is 5920 Hz
v=1485m/s
t=5.63s
let d represent distance from the vessel to the ocean bottom.
an echo travels a distance equivalent to 2d, that is to and fro after it reflects from the obstacle.


wavelengt of sound is
= v/f
= (1485)/(5920)
= 0.251 m
<h2>Right answer: a number and a unit</h2>
The measurement consists in <em>comparing a selected pattern with the object or phenomenon whose physical magnitude is going to be measured, to find out how many times the pattern is contained in that magnitude.</em> That is, it is about identifying or quantifying a particular characteristic or aspect of a particular object or construct.
Now, a well done measurement has two parts:
-The number gives us information about the quantity of the measurement, or in other words, the magnitude of the measurement and its precision.
-The units gives us information about the property that is being measured. This is quite important, because a measurement or result with no units is useless.
Note the units may be expressed with letter or symbols, depending on what we are measuring.
Answer:
9.5 m/s
Explanation:
Distance, S = 150m
Acceleration, a = 0.3 m/s^2
Initial velocity, u = 0 m/s
Final velocity, v
Use kinematics equation
v^2 - u^2 = 2aS
v^2 - 0 = 2*0.3*150 = 90
v = sqrt(90) = 9.49 m/s
Answer:
Explanation:
It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.
Let in equilibrium , tension in rope be T
For balancing Joe
T = M g
For balancing Simon
friction + T = mgsinθ
μmgcosθ+T = mgsinθ
μmgcosθ+Mg = mgsinθ
M = (msinθ - μmcosθ)
M = m(sinθ - μcosθ)
The answer is a newton second law