1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
11

Two climbers are on a mountain. Simon, of mass m, is sitting on a snow covered slope that makes an angle θ with the horizontal.

The coefficient of static friction between his body and the snow is μ. He is tied into one end of a massless rope that runs over a frictionless pulley. Joe, of mass M, is at the other end of the rope. He has fallen and is hanging motionless below an overhang. Derive an expression for the maximum value of Joe’s mass M so that Simon is not pulled down the slope, in terms of relevant system parameters.
Physics
1 answer:
elena-14-01-66 [18.8K]3 years ago
5 0

Answer:

Explanation:

It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.

Let in equilibrium , tension in rope be T

For balancing Joe

T = M g

For balancing Simon

friction + T = mgsinθ

μmgcosθ+T = mgsinθ

μmgcosθ+Mg = mgsinθ

M = (msinθ - μmcosθ)

M = m(sinθ - μcosθ)

You might be interested in
The resultant of two vectors is maximum, when angle between them is:
dexar [7]
When angle between them is zero
7 0
3 years ago
When you view the pendulum’s swing, it shows that at the very top of the swing KE = 0. What does that tell you about the pendulu
nadezda [96]

it tells you that it has a lot of force

5 0
3 years ago
Read 2 more answers
A result of chemical change is
Tcecarenko [31]
We're u can never put it back together
4 0
3 years ago
A speed boat increases its speed uniformly from vi = 20.0 m/s to vf = 30.0 m/s in a distance of 2.00 x 10^2m. (a) Draw a coordin
pychu [463]

a) See graph in attachment

b) The suvat equation to use is v_f^2 - v_i^2 = 2as

c) The acceleration is a=\frac{v_f^2-v_i^2}{2s}

d) The acceleration is 1.25 m/s^2

e) The time needed is 8 s

Explanation:

a)

For this part, find in attachment the diagram representing this situation.

Since we are not given any particular direction for the motion, we choose the x-direction as the direction of motion of the boat.

Then we have the following:

- The initial position of the boat is x_i = 0, the origin

- The  final position of the boat is x_f = 200 m

- The initial velocity of the boat is v_i = 20.0 m/s

- The final velocity of the boat is v_f = 30.0 m/s

Note that the arrow representing the final velocity is longer than that of the initial velocity, since the final velocity is larger.

b)

The motion of the speed boat is a uniformly accelerated motion (motion at constant acceleration), therefore we can use one of the suvat equations. In this particular problem, we know the following quantities:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

Therefore, the equation that best can be use to find the acceleration is

v_f^2 - v_i^2 = 2as

where

a is the acceleration

c)

Now we have to solve the equation

v_f^2 - v_i^2 = 2as

In order to find the acceleration.

This can be done by dividing both terms by 2s: this way, we find

\frac{v_f^2-v_i^2}{2s}=\frac{2as}{2s}

And so the acceleration is

a=\frac{v_f^2-v_i^2}{2s}

d)

Now we can use the equation found in part c) in order to find the acceleration.

We have the following data:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

And substituting into the equation,

a=\frac{30^2-20^2}{2(200)}=1.25 m/s^2

e)

In order to find the time it takes the boat to travel the given distance, we can use the following suvat equation:

v_f = v_i + at

where:

v_i is the initial velocity

v_f is the final velocity

a is the acceleration

t is the time

Here we have:

v_i = 20.0 m/s

v_f = 30.0 m/s

a=1.25 m/s^2

Solving for t, we find:

t=\frac{v_f-v_i}{a}=\frac{30-20}{1.25}=8 s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far befor
Mekhanik [1.2K]

Answer:

The new height the ball will reach = (1/4) of the initial height it reached.

Explanation:

The energy stored in any spring material is given as (1/2)kx²

This energy is converted to potential energy, mgH, of the ball at its maximum height.

If the initial height reached is H

And the initial compression of the spring = x

So, mgH = (1/2)kx²

H = kx²/2mg

The new compression, x₁ = x/2

New energy of loaded spring = (1/2)kx₁²

And the new potential energy = mgH₁

mgH₁ = (1/2)kx₁²

But x₁ = x/2

mgH₁ = (1/2)k(x/2)² = kx²/8

H₁ = kx²/8mg = H/4 (provided all the other parameters stay constant)

6 0
3 years ago
Other questions:
  • A dog has a speed of 7 m/s and a mass of 45 kg. What is the dog's kinetic<br> energy?
    15·2 answers
  • Which has more momentum: a 30 kg bicycle moving at 10 m/s or a 300 kg car at rest?
    8·1 answer
  • A positive charge is moved from one point to another point along an equipotential surface. The work required to move the charge:
    6·1 answer
  • Mark is biking a a velocity of 20 m/s and has a mass of 70kg what is his momentum
    10·1 answer
  • A nerve signal is transmitted through a neuron when an excess of Na+ ions suddenly enters the axon, a long cylindrical part of t
    10·1 answer
  • 1
    10·1 answer
  • How come we can see orange? In simple words.
    14·1 answer
  • If
    8·1 answer
  • What explains the difference in appearance between a full moon and a new moon?Select all that apply.
    15·1 answer
  • What is the structural unit of a substance called​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!