1. Answer;
-secondary structure;
Explanation;
Protein secondary structure refers to regular, repeated patterns of folding of the protein backbone. The two most common folding patterns are the alpha helix and the beta sheet. In an alpha helix, the polypeptide backbone coils around an imaginary helix axis in clockwise direction. In the beta sheet secondary structure, the polypeptide backbone is nearly fully extended. The R-groups are alternately pointed above and then below the extended backbone.
2. Answer;
- Quaternary structure
Explanation;
-Many proteins are formed from more than one polypeptide chain. The Quaternary structure describes the way in which the different subunits are packed together to form the overall structure of the protein. For example, the human hemoglobin molecule shown below is made of four subunits.
3. Answer;
-Tertiary structure
Explanation;
Tertiary structure refers to the overall folding of the entire polypeptide chain into a specific 3D shape. The tertiary structure of enzymes is often a compact, globular shape.
The tertiary structure is the structure at which polypeptide chains become functional. At this level, every protein has a specific three-dimensional shape and presents functional groups on its outer surface, allowing it to interact with other molecules, and giving it its unique function.
4. Answer;
Primary structure
Explanation;
-It is the simplest level of protein structure and is simply a sequence of amino acids in a polypeptide chain. For example, the hormone insulin has two polypeptide chains, A and B. Each chain has its own set of amino acids, assembled in a particular order. For instance, the sequence of the A chain starts with glycine at the N-terminus and ends with asparagine at the C-terminus, and is different from the sequence of the B chain.
Answer:
Eukaryotes:
-Organisms with a well defined nucleus are known as eukaryotes. such cells are called as eukaryotic cells.
- Their nucleus is enclosed within the nuclear membrane.
- They do not posses a mitochondria.
- The cell wall is the outer most layer of a eukaryotic cell (only plant cells have a cell wall)
- The cells are divided by a process called mitosis.
Eg: Plants, Animals.
Prokaryotes:
- Organisms without a well defined nucleus are known as prokaryotes. Such cells are called as Prokaryotic cells.
- They lack nuclear membrane.
- Mitochondria, Golgi bodies, chloroplast and lysosomes are absent.
- The genetic material (DNA) is present on the chromosome.
Eg: Every organism coming under the kingdom monera.
Explanation:
For a punnett squares the F is the dominant gene and the f is the recessive gene
So the top would most likely be a male and the top would a male and the side would be the female
This is for kids
Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation: