1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
8

Which of the following is an example of Newton’s first law of motion?

Physics
2 answers:
Zina [86]3 years ago
8 0

Answer:

I think first one

Explanation:

Because his first law of motion was every object will remain at rest or uniform motion in a straight line

marysya [2.9K]3 years ago
3 0

Answer:

Sam's bike hits a curb and he flies over the handlebars, onto the grass.

Explanation:

As we know that: Newtons first law of motion states that a body continues to remain in the inertia of rest or motion, unless it is forced to change by applying an unbalanced force. Sam's bike is in uniform motion when suddenly the curb(external force) hits it and makes Sam to fall.

You might be interested in
As a raindrop falls from a cloud to the surface of Earth,
Sunny_sXe [5.5K]
The correct answer would be C. it moves at a constant speed. The troposphere(the layer our weather is in) is not nearly high enough for gravity to be different at different altitudes.
6 0
2 years ago
Drag and drop the words into the correct locations to label the layers of the atmosphere, with the lowest layer at the bottom. (
professor190 [17]

Answer:

The top layer is exosphere. The fourth is the Thermosphere. The middle layer is the mesophere. The second layer is the Stratospere. the lowest layer is the troposphere

Explanation:

4 0
2 years ago
Read 2 more answers
For each of the following pairs of gas properties, describe the relationship between the properties, describe a simple system th
asambeis [7]

Answer:

For  each pair of properties of a gas, the relationships are (see the explanation for the description of the systems):

  1. (a) Volume and pressure: The relationship between them is inversely proportional.
  2. (b) Pressure and temperature: They have a directly proportional relationship.
  3. (c) Volume and temperature: They relationship is directly proportional.
  4. (d) Number of gas particles and pressure: The relationship is directly proportional between them.

Explanation:

1. Volume and pressure (temperature and amount of particles constant):

They have an inversely proportional relationship, because <em>if volume is reduced, the pressure increases, or if the volume increases, the pressure decreases</em>.

A simple system could be one similar to the one used by Boyle to test this relationship:

  • Seal the short extreme of a translucent J tube. It could be glass or plastic.
  • Put some water on it. As much as needed to have both sides of the tube filled.
  • Using a syringe, and a flexible small tube,inject a determined volume of air in the bottom in a way that the bubble is trapped in the seal side of the J tube.
  • Then if more water is added to the tube, it will increase the pressure (from the pressure definition is possible to in the trapped air, and is possible to measure the compression of the air bubble. The same is possible if using the syringe, and the flexible tube, some water is removed, and the increasing of volume could be observed.

2. Pressure and temperature (volume and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure would increase, also</em>.

A simple system to show this is two cans of soda.

  • The can is rigid, so the volume is always constant, and the amount of gas inside the soda is the same.
  • Put one can under the sun, and the other in the cooler.
  • After a while, take it out the can in the cooler, and open both cans.
  • The one that was under the sun will "explode", in other words, it will liberate a lot of foam of gas and soda, meaning that the pressure inside the can was high.
  • The one that was in te cooler, won't liberate any foam, meaning that the pressure was low.

3. Volume and temperature (pressure and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure will increase, also</em>.

A simple system to show this is a party balloon.

  • Fill the party balloon with some air, not enough to be close to explode, but enough to have it of a medium size. Tie the filling hole of the balloon.
  • The air inside the balloon would be at the same pressure than the atmosphere around it, so always will be at this pressure, and the close hole ensure that it has always the same amount of air inside.
  • Now is possible to use some heat source, for example as a hair dryer to increase the temperature of the balloon and its contents. The size of the balloon will increase. Then using water is possible to cool it down and watch how its size decreases.

4. Number of gas particles and pressure (volume and temperature of gas remains constant)

They have a directly proportional relationship, because <em>if the amount of gas particles is reduced, the pressure decreases, or if quantity of gas particles increases, the pressure will increase, also</em>.

A simple system to show this would be a bicycle tire:

  • The tire is rigid, so its volume is essentially constant, and the temperature would remains the same if not moving or driving it.
  • Using a tire gauge, it is possible to know the manometric pressure inside the tire, that is the difference between the actual pressure inside the tire and the atmospheric pressure.
  • Then each time that using an air pump some air is injected in the tire, it si possible to check the pressure inside it using the gauge, and observe how is increasing.
  • Also, is possible to open the valve, to allow some air to escape, then use the gauge to observe how the pressure decreases.

7 0
3 years ago
Storage of unlimited quantities of energy in batteries is possible. TrueFalse
dangina [55]

False

It is impossible to get infinite energy let alone to put it inside one battery

3 0
3 years ago
Read 2 more answers
A shopping cart is given an initial velocity of 4 m/s and experiences a constant acceleration of 4 m/s2. What is the magnitude o
NNADVOKAT [17]

Answer:

48m

Explanation:

  • Initial velocity = 4m/s
  • Acceleration = 4m/s²
  • Time = 4s
  • Displacement = ?

From Second equation of motion ,

\longrightarrow s = ut + 1/2at²

\longrightarrow s = 4*4 + 1/2*4*(4)² m

\longrightarrow s = (16 + 2 * 16) m

\longrightarrow s = ( 16 + 32 )m

\longrightarrow s = 48 m

8 0
2 years ago
Other questions:
  • If the near-point distance of the jeweler is 22.0 cm, and the focal length of the magnifying glass is 7.70 cm, find the angular
    5·1 answer
  • If you drive 125 km in 2 hours, what is your average speed
    11·2 answers
  • You design toys for a toy company. Your boss wants you to hook up the lights in the toy car you are working on in the cheapest w
    9·2 answers
  • 1.9 kg block of iron at 24 °C is rapidly heated by a torch such that 14 kJ is transferred to it. What temperature would the bloc
    11·1 answer
  • A ball is thrown straight up from a point 2 m above the ground. The ball reaches a maximum height of 3 m above its starting poin
    10·1 answer
  • A metal pot feels hot to the touch, but the plastic handle does not. Which type of material is the plastic handle? A. A thermal
    15·2 answers
  • When a beam of light passes at an oblique angle into a material of lower optical density, the angle of incidence is
    13·2 answers
  • Formation of a precipitate in a chemical reaction is considered a??
    15·2 answers
  • The weight of a body above sea level varies inversely with the square of the distance from the center of Earth. If a woman weigh
    7·1 answer
  • What happens when an ionic compound is melted?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!