The S strain Pneumococcus bacteria had a smooth surface because IT IS SURROUNDED BY A CARBOHYDRATE CAPSULE CALLED THE S STRAIN. The other form, the R strain has a rough surface and no capsule. It is only the S strain that exhibits virulence.
Answer:
The
electrons are moving through the superconductor per second.
Explanation:
Given :
Current
A
Charge of electron
C
Time
sec
From the formula of current,
Current is the number of charges flowing per unit time.

Where
number of charges means in our case number of electrons



Therefore,
electrons are moving through the superconductor per second.
Answer:
option B is the correct answer
Explanation:
please follow me and Mark me brainliest please
Answer:
As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.
Explanation:
As we may know, the change in state of an object is due to the change in the average kinetic energy of the particles.
This average kinetic energy is proportional to the temperature of the particles.
This is because heat is a form of energy; by adding energy to ice - heat, you "excite" the water molecules, breaking the interactions in the lattice structure and forming weaker, looser hydrogen-bonding interactions.
This causes the ice to melt. This is demonstrated in the image below.
More generally, when you remove energy - the object cools down, the particles move a lot slower. So slow, that they individually attract other molecules more than before, and this results in a physical change that also changes the state.
Answer:
4.5 m/s
Explanation:
The rock must barely clear the shelf below, this means that the horizontal distance covered must be

while the vertical distance covered must be

The rock is thrown horizontally with velocity
, so we can rewrite the horizontal distance as

where t is the time of flight. Re-arranging the equation,
(1)
The vertical distance covered instead is

where we omit the term
since the initial vertical velocity is zero. From this equation,
(2)
Equating (1) and (2), we can solve the equation to find
:
