1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
3 years ago
7

The lightbulb is an example of

Physics
1 answer:
AlexFokin [52]3 years ago
4 0
A object that has been reinvented so it is more energy efficient
You might be interested in
The earth rotates once per day about an axis passing through the north and south poles. True or False
alexandr402 [8]

Answer: False.

Explanation: The Earth rotates once per day in direction from East to West. The rotation of the Earth daily is responsible for day and night experienced, the areas of the Earth facing the Sun experiences day time while the areas of the Earth away from the Sun in the Earth's shadow experiences night time.

While the revolution of the Earth around the gives rise to a year, as it takes 365 days for the Earth to go round the sun.

5 0
3 years ago
Which FBD would represent a car moving right with a motor force of 250 N, and force of friction of 750N, a weight of 8500N and a
babymother [125]

Answer:

Option C

Explanation:

Given that

Motor force is 250 N

Force of friction is 750 N

Weight is 8500 N

And, the normal force is 8500 N

Now based on the above information

Here length of the rector shows the relative magnitude forward force i.e. 250 N i..e lower than the frictional force i.e. backward and weight i.e. 8500 would be equivalent to the normal force

8 0
2 years ago
What is the distance covered by a Freely falling object 5 seconds after being dropped ? After 6 seconds?
mario62 [17]

This year is 60 years since I learned this stuff, and one of the things I always remembered is the formula for the distance a dropped object falls:

D = 1/2 A T²

Distance = (1/2) (acceleration) (time²)

The reason I never forgot it is because it's SO useful SO often.  You really should memorize it.  And don't bury it too deep in your toolbox ... you'll be needing it again very soon. (In fact, if you had learned it the first time you saw it, you could have solved this problem on your own today.)

The problem doesn't tell us what planet this is happening on, so let's make it easy and just assume it's on Earth.  Then the 'acceleration' is Earth gravity, and that's 9.8 m/s² .

In 5 seconds:

D = 1/2 A T²

D = (1/2) (9.8 m/s²) (5 sec)²

D = (4.9 m/s²) (25 sec²)

D = 122.5 meters


In 6 seconds:

D = 1/2 A T²

D = (1/2) (9.8 m/s²) (6 sec)²

D = (4.9 m/s²) (36 sec²)

D = 176 meters


5 0
3 years ago
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
Draw graph for positive acceleration, negative acceleration and zeo acceleration​
natulia [17]

Answer:

Explanation:

horizontal is zero slope, and the vertical is undefined

3 0
3 years ago
Other questions:
  • Astronomers have seen stars forming within a nebular cloud. As the nebular cloud condenses and its own gravitational attraction
    15·2 answers
  • What type of pipe wrenches are designed for turning and holding where marring is not objectionable?
    12·1 answer
  • A race car makes one lap around a track of radius 50 m in 9.0 s. What is the average velocity? *
    13·1 answer
  • In my solar system, we have a planet that is the innermost to our star that is exactly like the innermost planet in your solar s
    13·1 answer
  • Green light has a lower frequency than blue light. Which color of light has a longer wavelength?
    8·2 answers
  • Simplify the expression [9+2(2-4)]/3
    10·1 answer
  • There is a current of 0.99 a through a light bulb when its connected to a 9.7 v battery what is the resistance of the light bulb
    9·1 answer
  • What is the meaning for the word acid
    13·2 answers
  • The scientific principle involve in the inflation of an airbag. Explain how this Device protects the drivers and the front passe
    8·1 answer
  • What are two serious condition of the circulatory system?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!