1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
11

Object A has 604 J of kinetic energy and 285 J of gravitational potential energy. Object B has 481 J of kinetic energy and 300 J

of gravitational potential energy. Which object has more mechanical energy? Object A has more mechanical energy. Object B has more mechanical energy. They have the same amount of mechanical energy. There is not enough information to know.
Chemistry
2 answers:
Olenka [21]3 years ago
3 0
Mechanical energy can be defined as the sum of kinetic energy and the gravitational potential energy. 

Object A has kinetic energy as 604 J and gravitational potential energy as 285 J.
Hence, mechanical energy of A = 604 J + 285 J
                                                   = 889 J

Object B has kinetic energy as 481 J and gravitational potential energy as 300 J.
Hence, mechanical energy of A = 481 J + 300 J
                                                   = 781J

Hence, object A has more mechanical energy than B.


nadya68 [22]3 years ago
3 0

Answer:

Object A has more mechanical energy.

Explanation:

Object A has more mechanical energy.

You might be interested in
Identify the number and kinds of atoms present in a molecule of each compound butane
ohaa [14]
The butane is a kind of alkane. And there is only carbon and hydrogen and single bonds. The formula of butane is C4H10. There are four carbon atoms and ten hydrogen atoms present in one butane molecule.
4 0
3 years ago
Help I’ll give 10 points it’s a test
mezya [45]
I believe it’s the last option
6 0
3 years ago
Calculate the amount of copper (in moles) in a 45.2 g pure copper sheet
tangare [24]

Answer:

0.712 mol

Explanation:

The easiest way to do this is to use a proportion.

1 mol of copper = 63.5 grams (check this using your periodic table).

x mol of copper = 45.2 grams

1/x = 63.5 / 45.2              Cross multiply

63.5 x = 1 * 45.2              Divide by 63.5

x = 45.2/63.5

x = 0.712 mol                   Answer to 3 sig digs

8 0
3 years ago
An airplane travels 2100 km at 1000km/hE. It encounters a wind and slows to 800 km/h E for the next 1300 km. What is the average
Deffense [45]

Answer:

The average velocity of the airplane for this trip is 1684.21 km/h

Explanation:

Average velocity is the rate of change of displacement with time. That is,

Average velocity = \frac{Displacement }{Change in time} = Δx / Δt = \frac{x2 - x1}{t2 - t1}

Now we will calculate the time taken by the airplane for the first motion before it encounters a wind.

From,

Velocity = \frac{Distance traveled}{Time taken}

Time = \frac{Distance traveled}{Velocity}

Therefore, Time = \frac{2100km }{1000km/h}

Time = 2.1h

This is the time taken before the airplane encounters a wind.

Hence, t1 = 2.1h

Now, For the time taken by the airplane when it encounters a wind

Also from,

Velocity = \frac{Distance traveled}{Time taken}

Time = \frac{Distance traveled}{Velocity}

Therefore, Time = \frac{1300km }{800km/h}

Time = 1.625h

Hence, t2 = 1.625h

Now, to calculate the average velocity

Average velocity = \frac{x2 - x1}{t2 - t1}

x1= 2100, x2= 1300, t1= 2.1h and t2= 1.625h

Hence, Average velocity = \frac{1300 - 2100}{1.625 - 2.1}

Average velocity = 1684.21 km/h

7 0
3 years ago
Answer these please ASAP need help no idea how to do these
STALIN [3.7K]

Answer:

Explanation:

Cu:

Number of moles = Mass / molar masa

2 mol = mass / 64 g/mol

Mass = 128 g

Mg:

Number of moles = Mass / molar masa

0.5 mol = mass / 24 g/mol

Mass =  g

Cl₂:

Number of moles = Mass / molar masa

Number of moles  = 35.5 g / 24 g/mol

Number of moles = 852 mol

H₂:

Number of moles = Mass / molar mass

8 mol  = Mass / 2 g/mol

Mass =  16 g

P₄:

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

O₃:

Number of moles = Mass / molar masa

Number of moles  = 1.6 g /48  g/mol

Number of moles = 0.033 mol

H₂O

Number of moles = Mass / molar masa

Number of moles  = 54 g / 18 g/mol

Number of moles = 3 mol

CO₂

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

NH₃

Number of moles = Mass / molar masa

Number of moles  = 8.5 g / 17 g/mol

Number of moles = 0.5 mol

CaCO₃

Number of moles = Mass / molar masa

Number of moles  = 100 g / 100 g/mol

Number of moles = 1 mol

a)

Given data:

Mass of iron(III)oxide needed = ?

Mass of iron produced = 100 g

Solution:

Chemical equation:

F₂O₃ + 3CO    →    2Fe  + 3CO₂

Number of moles of iron:

Number of moles = mass/ molar mass

Number of moles = 100 g/ 56 g/mol

Number of moles = 1.78 mol

Now we compare the moles of iron with iron oxide.

                        Fe          :           F₂O₃                

                           2          :             1

                          1.78       :        1/2×1.78 = 0.89 mol

Mass of  F₂O₃:

Mass = number of moles × molar mass

Mass = 0.89 mol × 159.69 g/mol

Mass = 142.124 g

100 g of iron is 1.78 moles of Fe, so 0.89 moles of F₂O₃ are needed, or 142.124 g of iron(III) oxide.

b)

Given data:

Number of moles of Al = 0.05 mol

Mass of iodine = 26 g

Limiting reactant = ?

Solution:

Chemical equation:

2Al + 3I₂   →  2AlI₃

Number of moles of iodine = 26 g/ 254 g/mol

Number of moles of iodine = 0.1 mol

Now we will compare the moles of Al and I₂ with AlI₃.

                          Al            :         AlI₃    

                          2             :           2

                         0.05         :        0.05

                           I₂            :         AlI₃

                           3            :          2

                         0.1           :           2/3×0.1 = 0.067

Number of moles of AlI₃ produced by Al are less so it will limiting reactant.

Mass of AlI₃:                            

Mass = number of moles × molar mass

Mass = 0.05 mol × 408 g/mol

Mass = 20.4 g

26 g of iodine is 0.1 moles. From the equation, this will react with 2 moles of Al. So the limiting reactant is Al.

c)

Given data:

Mass of lead = 6.21 g

Mass of lead oxide = 6.85 g

Equation of reaction = ?

Solution:

Chemical equation:

2Pb + O₂   → 2PbO

Number of moles of lead = mass / molar mass

Number of moles = 6.21 g/ 207 g/mol

Number of moles = 0.03 mol

Number of moles of lead oxide = mass / molar mass

Number of moles = 6.85 g/ 223 g/mol

Number of moles = 0.031 mol

Now we will compare the moles of oxygen with lead and lead oxide.

               Pb         :        O₂

                2          :         1

               0.03     :      1/2×0.03 = 0.015 mol

Mass of oxygen:

Mass = number of moles × molar mass

Mass = 0.015 mol × 32 g/mol

Mass =  0.48 g

The mass of oxygen that took part in equation was 0.48 g. which is 0.015 moles of oxygen. The number of moles of Pb in 6.21 g of lead is 0.03 moles. So the balance equation is

2Pb + O₂   → 2PbO

   

6 0
3 years ago
Other questions:
  • The average propane cylinder for a residential grill holds approximately 18 kg of propane. how much energy (in kj) is released b
    6·1 answer
  • How many moles of carbon in 130g of C2H6
    7·2 answers
  • Calculate the mass percentages of carbon hydrogen and oxygen in sucrose
    11·1 answer
  • Why does a reaction involving a catalyst finally stop
    13·2 answers
  • What is the name of this organic compound?
    7·1 answer
  • Calculate the concentration of H3O+ in a solution that contains 5.5 × 10-5 M OH- at 25°C. Identify the solution as acidic, basic
    5·1 answer
  • A 1.0 kg ball is thrown into the air and initial velocity of 30 mi./s how high into the air did the ball travel
    8·1 answer
  • The name of the chemical reaction
    11·1 answer
  • Acid rain is a dilute solution of acids that dissolve the calcium carbonate in limestone statues. Concentrated acids can dissolv
    13·1 answer
  • When the u-235 nucleus is struck with a neutron, the zn-72 and sm-160 nuclei are produced, along with some neutrons. How many ne
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!