Answers:
a) carcinogenic
b) anti-carcinogenic
c) carcinogenic
d) carcinogenic
e) carcinogenic
f) anti-carcinogenic
g) anti-carcinogenic
h) anti-carcinogenic
Explanation:
Cyclins are proteins that regulate the progression through the cell cycle, i.e., the transition of G1 to S phase. It is well known that high cyclin expression may lead to cell proliferation states, which is closely associated with cancer progression. Moreover, the blockage of cyclins may have an anti-carcinogenic effect by inhibiting the progression through the cell cycle. MAP kinases are serine/threonine kinases that regulate the progression through the cell cycle by phosphorylating a variety of substrates during cell proliferation. In consequence, phosphatases that inactivate MAPK kinases (i.e., by dephosphorylation) may have an anticarcinogenic effect. The p53 is a tumor suppressor protein involved in diverse cellular processes including DNA repair, cycle arrest and programmed cell death. This protein (p53) is activated by phosphorylation at target residues and phosphatases inactivate it, thereby the blockage of its degradation may have an anticarcinogenic effect. Oncogene activation (i.e., the expression of oncogenes), may alter diverse cellular processes including DNA replication, and thereby may lead to cancer development. The G-protein α subunit is a GTPase that hydrolyses GTP and thus has a major role in controlling the kinetics of the G-protein signaling cascade. Platelet-derived growth factor receptors (PDGFR) are kinase receptors that play roles in regulating cellular differentiation, cell proliferation and cell growth. PDGFR receptors are present on the surface of normal cells, however, it has been shown that mutations of the PDGFR genes that lead to their high expression lead to uncontrolled cell growth and consequently cause cancer (i.e., by increasing PDGF signaling).
Explanation:
the carbon cycle is the biogechemical cycle by which carbon is exchanged between the biosphere, pedosphere, hydrosphere and the Earth's atmosphere
Prophase- <span>chromosomes become visible as paired chromatids and the nuclear envelope disappears.
metaphase- </span><span>chromosomes become attached to the spindle fibers.
anaphase- </span><span>chromosomes move away from one another to opposite poles of the spindle.
telophase- </span><span>the final phase of cell division in which chromatids, or chromosomes, move to opposite ends of the cell and two nuclei are formed.</span>
Answer:
The phenotype is the result of the interaction between the genes (i.e., genotype) and environmental factors.
Explanation:
Cancer is a disease caused by abnormal expression of genes involved in the cell cycle, mitosis, DNA replication, etc. Moreover, the abnormal gene expression may be associated with environmental factors such as smoking, alcohol consumption, etc.
I believe the answer is the Regeneration stage.
A this stage of the Calvin Cycle, only one of the G3P molecules leaves the cycle and is sent to the cytoplasm to contribute to the formation of other compounds needed by the plant. Because the G3P exported from the chloroplast has three carbon atoms, it takes three "turns" of the Calvin cycle to fix enough net carbon to export one G3P. Each turn makes two G3Ps, therefore three turns make six G3Ps.