The circumference of a circle that was computed when the diameter is 3cm will be 9.426cm.
<h3>How to find the circumference?</h3>
The circumference of a circle of gotten by the formula:
C = 2πr or πd
where,
r = radius
d = diameter
Since the diameter is given as 3cm, the circumference will be:
= πd
= 3.142 × 3
= 9.426cm
In conclusion, the circumference of the circle is 9.426cm.
Learn more about circle on:
brainly.com/question/25938130
It is hard to find out question cn u pls take a pic and upload so it will more easier to find out the question
Answer:
<h3>
The option B) is correct.</h3><h3>
That is the line that makes the sum of the squares of the vertical distances of the data points from the line (the sum of squared residuals) as small as possible is correct answer</h3>
Step-by-step explanation:
Given that " The least-squares regression line "
The least-squares regression line is <u>the line that makes the sum of the squares of the vertical distances of the data points from the line (the sum of squared residuals) as small as possible.</u>
Therefore option B) is correct
Answer:
KM=60°
Step-by-step explanation:
The average of arc LN and arc KM is equal to 110.

160+KM=220
KM=60
![\bf \begin{cases} x=3\implies &x-3=0\\ x=1+3i\implies &x-1-3i=0\\ x=1-3i\implies &x-1+3i=0 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ (x-3)(x-1-3i)(x-1+3i)=0 \\\\\\ (x-3)\underset{\textit{difference of squares}}{([x-1]-3i)([x-1]+3i)}=0\implies (x-3)([x-1]^2-[3i]^2)=0 \\\\\\ (x-3)([x^2-2x+1]-[3^2i^2])=0\implies (x-3)([x^2-2x+1]-[9(-1)])=0](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%3D3%5Cimplies%20%26x-3%3D0%5C%5C%20x%3D1%2B3i%5Cimplies%20%26x-1-3i%3D0%5C%5C%20x%3D1-3i%5Cimplies%20%26x-1%2B3i%3D0%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28x-3%29%28x-1-3i%29%28x-1%2B3i%29%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-3%29%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%28%5Bx-1%5D-3i%29%28%5Bx-1%5D%2B3i%29%7D%3D0%5Cimplies%20%28x-3%29%28%5Bx-1%5D%5E2-%5B3i%5D%5E2%29%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D-%5B3%5E2i%5E2%5D%29%3D0%5Cimplies%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D-%5B9%28-1%29%5D%29%3D0)
[ correction added, Thanks to @stef68 ]
![\bf (x-3)([x^2-2x+1]+9)=0\implies (x-3)(x^2-2x+10)=0 \\\\\\ x^3-2x^2+10x-3x^2+6x-30=0\implies x^3-5x^2+16x-30=f(x) \\\\\\ \stackrel{\textit{applying a translation with a -2f(x)}}{-2(x^3-5x^2+16x-30)=f(x)}\implies -2x^3+10x^2-32x+60=f(x)](https://tex.z-dn.net/?f=%5Cbf%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D%2B9%29%3D0%5Cimplies%20%28x-3%29%28x%5E2-2x%2B10%29%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E3-2x%5E2%2B10x-3x%5E2%2B6x-30%3D0%5Cimplies%20x%5E3-5x%5E2%2B16x-30%3Df%28x%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bapplying%20a%20translation%20with%20a%20-2f%28x%29%7D%7D%7B-2%28x%5E3-5x%5E2%2B16x-30%29%3Df%28x%29%7D%5Cimplies%20-2x%5E3%2B10x%5E2-32x%2B60%3Df%28x%29)