Answer:
Below.
Step-by-step explanation:
f) (a + b)^3 - 4(a + b)^2
The (a+ b)^2 can be taken out to give:
= (a + b)^2(a + b - 4)
= (a + b)(a + b)(a + b - 4).
g) 3x(x - y) - 6(-x + y)
= 3x( x - y) + 6(x - y)
= (3x + 6)(x - y)
= 3(x + 2)(x - y).
h) (6a - 5b)(c - d) + (3a + 4b)(d - c)
= (6a - 5b)(c - d) + (-3a - 4b)(c - d)
= -(c - d)(6a - 5b)(3a + 4b).
i) -3d(-9a - 2b) + 2c (9a + 2b)
= 3d(9a + 2b) + 2c (9a + 2b)
= 3d(9a + 2b) + 2c (9a + 2b).
= (3d + 2c)(9a + 2b).
j) a^2b^3(2a + 1) - 6ab^2(-1 - 2a)
= a^2b^3(2a + 1) + 6ab^2(2a + 1)
= (2a + 1)( a^2b^3 + 6ab^2)
The GCF of a^2b^3 and 6ab^2 is ab^2, so we have:
(2a + 1)ab^2(ab + 6)
= ab^2(ab + 6)(2a + 1).
Step-by-step explanation:
Given,
Length of railroad car = 6 inches
The length of railroad track = 5 feet
We will convert this length into inches.
1 feet = 12 inches
5 feet = 12*5 = 60 inches
Let,
x be the number of cars.
Number of cars * Length of each car = Length of track
Dividing both sides by 6
10 cars can fit on railroad track.
Answer:
C) -1
Step-by-step explanation:
(ax+3)²=36
<em>Square root both sides</em>
ax+3=6
<em>Subtract 3 from both sides</em>
ax=3
<em>Put x in</em>
-3a=3
a= -1
C) -1 would work.