Answer:
11 invitations each
Step-by-step explanation:
Let the number of invitations they bought be x .
Since they spent the same amount of money, Their total costs would be the same. Hence ;
3.25 + 0.75(x) = 0.5x + 6
0.75x - 0.5x = 6 - 3.25
0.25x = 2.75
x = 2.75/0.25
x= 11 invitations
<h2>
Answer:</h2>
15 minutes
<h2>
Step-by-step explanation:</h2>
For every hour of homework she gets 5 minutes of video games.
She spend 3 hours of homework.
We multiply 3*5
Answer is 15
Let the numbers be x and y.
x*y=HCF*LCM=6*60=360
thus
y=360/x
next we find the list of combinations of x and y and test if they satisfy the conditions above:
(6,60),(12,30),(18,20),(24,15)
out of the above, only (6,60) and (12,30) satisfy both conditions. Thus our answer is:
(6,60) or (12,30)
Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
Answer: about61
Step-by-step explanation: