Answer:
9. 66°
10. 44°
11. 
12. 
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a = 
a = 
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a = 
a = 
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) = 
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) = 
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
A right triangle has one angle that's 90° and a corner that looks like an L. Obtuse triangles have one angle that's greater than 90°. In acute triangles, all the angles are less than 90°.
Step-by-step explanation:
Answer:
12.5π or ≈39.27
Step-by-step explanation:
The formula for finding the volume is V=πr^2*d (where h is the height and r is the radius).
Plug in the values: V=π(2.5)^2*2 (Diameter=2*Radius)
Solve: V=6.25π*2
V=12.5π
V≈39.27
<h3>
Answer: 16 square units</h3>
Let x be the height of the parallelogram. Right now it's unknown, but we can solve for it using the pythagorean theorem. Focus on the right triangle. It has legs a = 3 and b = x, with hypotenuse c = 5
a^2 + b^2 = c^2
3^2 + x^2 = 5^2
9 + x^2 = 25
x^2 = 25-9
x^2 = 16
x = sqrt(16)
x = 4
This is a 3-4-5 right triangle.
The height of the parallelogram is 4 units.
We have enough info to find the area of the parallelogram
Area of parallelogram = base*height
Area of parallelogram = 4*4
Area of parallelogram = 16 square units
Coincidentally, the base and height are the same, which isn't always going to be the case. The base is visually shown as the '4' in the diagram. The height is the dashed line, which also happens to be 4 units long.
Answer:
C AND D
Step-by-step explanation:
AP EX Confirmed