1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
2 years ago
9

On one highway, Gabriela noticed that they passed mile marker 123 at 1:00. She then saw that they reached mile marker 277at 3:00

. Since Mr. Morales was driving at a constant speed, their mile-marker location over time can be represented by a line where the time in hours is the independent variable and the mile marker is the dependent variable. The points (1,123) and (3,277) are two points on this line.
What is the value of the slope of this line?
Mathematics
1 answer:
Elena L [17]2 years ago
6 0

<u>Given</u>:

Let time be the independent variable.

Let mile marker be the dependent variable.

On one highway, Gabriela noticed that they passed mile marker 123 at 1:00. She then saw that they reached mile marker 277 at 3:00 and Mr. Morales was driving at a constant speed.

The coordinates of the points on this line are (1,123) and (3,277)

We need to determine the slope of the line.

<u>Slope of the line:</u>

The slope of the line can be determined using the formula,

m=\frac{y_2-y_1}{x_2-x_1}

Substituting the points (1,123) and (3,277) in the above formula, we get;

m=\frac{277-123}{3-2}

m=\frac{154}{1}

m=154

Therefore, the value of the slope of this line is 154.

You might be interested in
What is the explicit rule for the pattern 16,11,6,1...
svlad2 [7]

Answer:

the explicit rule is the difference, which is -5.

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
What is the probability of drawing an even numbered card, keeping it, and then drawing another even numbered card from a stack o
Oksanka [162]

Answer: 1/4

Step-by-step explanation:

In a stack of 24, the 2 mediums are odd and even cards in this question. This means that 1/2 the cards are even and 1/2 are odd. To get a even card once is a 1/2 chance, then to get it again is 1/2 x 1/2 chance or 1/4 chance. This is what I think.

5 0
2 years ago
URGENT HELP What is the equation of the line that passes through the point (-7, -4) and has a
shepuryov [24]

The final equation is:

y=x+3

Further explanation:

The general form of equation of a line in slope-intercept form is:

y=mx+b

Here m is the slope

Given

m=1

(x,y) = (-7,-4)

Putting\ the\ value\ of\ slope\ in\ equation\\y=(1)(x)+b\\y=x+b

To find the value of b, we have to put the point in the equation

-4=-7+b\\-4+7=b\\b=3

The final equation is:

y=x+3

Keywords: Slope-intercept form, equation of line

Learn more about slope-intercept form at:

  • brainly.com/question/6594923
  • brainly.com/question/6698921

#LearnwithBrainly

7 0
2 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
At Joe’s Burger House, the buzzer for hamburgers rings every 5 minutes and the buzzer for french fries rings every 3 minutes. Fr
olganol [36]

Answer:

10

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the quotient and remainder found when dividing 4x^3-2x^2-18x+16 by 2x-4?
    10·2 answers
  • 2m + 3y - 7m + 3y - 2y - m - m​
    15·1 answer
  • 17.6 degrees F<br> 35.2 degrees F<br> 41.0 degrees F<br> 72.2 degrees F
    10·1 answer
  • 7,920 yd = mi ?? but, as a fraction.
    10·1 answer
  • Angel has an action figure collection of 300 action figures. He keeps 267 of the action figures on his wall. What percentage of
    6·1 answer
  • 12 1/2 - 6 5/8 = <br> what does it equal??
    11·1 answer
  • 4x + y = 46.75 help!!<br> A 8.50<br> B 8.75<br> C 9.50<br> D12.75
    15·1 answer
  • The number of adults at an amusement park, measured in hundreds of people, is represented by the function a(w)=−0.4w^2+5w+9, whe
    9·1 answer
  • If A = (0,0) and B = (8,2), what is the length of AB
    13·1 answer
  • Suppose that the mean and s.d of the tuition fee paid by bs mathematics students in umt is 150and 30 in uds, respectively. it is
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!