We are given that there
will be (1/2) a litre after the first pouring, so considering two successive
pourings (n and (n+1)) with 1/2 litre in each before the nth pouring occurs:
1/2 × (1/n) = 1/(2n)
1/2 - 1/(2n) = (n-1)/2n
1/2 + 1/(2n) = (n+1)/2n
(n-1)/2n and (n+1)/2n in
each urn after the nth pouring
Then now consider the
(n+1)th pouring
(n+1)/2n × 1/(n+1) =
1/(2n)
(n+1)/(2n) - 1/(2n) =
n/(2n) = 1/2
Therefore this means that after
an odd number of pouring, there will be 1/2 a litre in each urn
Since 1997 is an odd
number, then there will be 1/2 a litre of water in each urn.
Answer:
<span>1/2</span>
Replace x with the value in the answers and solve for Y to see which ones match.
y = 1-4 = -3
y = -1-4 = -5
(1,-3), (-1,-5) is the answer.
Set up a ratio 3 3/4 = 15/4 and 1 1/2 = 3/2 so
((15/4miles) / (3/2hours)) = xmiles/4hours solve for x
so x = 4hours*((15/4miles)/(3/2hours)) = x miles
the hours cancel and you are left with x miles = 10miles