Answer:
V = (About) 22.2, Graph = First graph/Graph in the attachment
Step-by-step explanation:
Remember that in all these cases, we have a specified method to use, the washer method, disk method, and the cylindrical shell method. Keep in mind that the washer and disk method are one in the same, but I feel that the disk method is better as it avoids splitting the integral into two, and rewriting the curves. Here we will go with the disk method.
![\mathrm{V\:=\:\pi \int _a^b\left(r\right)^2dy\:},\\\mathrm{V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy}](https://tex.z-dn.net/?f=%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cpi%20%5Cint%20_a%5Eb%5Cleft%28r%5Cright%29%5E2dy%5C%3A%7D%2C%5C%5C%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%7D)
The plus 1 in '1 + 2/x' is shifting this graph up from where it is rotating, but the negative 1 is subtracting the area between the y-axis and the shaded region, so that when it's flipped around, it becomes a washer.
![V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=\pi \cdot \int _1^3\left(1+\frac{2}{y}\right)^2-1dy\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\= \pi \left(\int _1^3\left(1+\frac{2}{y}\right)^2dy-\int _1^31dy\right)\\\\](https://tex.z-dn.net/?f=V%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%5Cpi%20%5Ccdot%20%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1dy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3ASum%5C%3ARule%7D%3A%5Cquad%20%5Cint%20f%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29dx%3D%5Cint%20f%5Cleft%28x%5Cright%29dx%5Cpm%20%5Cint%20g%5Cleft%28x%5Cright%29dx%5C%5C%3D%20%5Cpi%20%5Cleft%28%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2dy-%5Cint%20_1%5E31dy%5Cright%29%5C%5C%5C%5C)

Our exact solution will be V = π(4In(3) + 8/3). In decimal form it will be about 22.2 however. Try both solution if you like, but it would be better to use 22.2. Your graph will just be a plot under the curve y = 2/x, the first graph.
Answer:
8 7
Step-by-step explanation:
Because the number will be positive
Answer:
2,000,000
Step-by-step explanation:
Its known as the signature line
Known :
w = 12 feet
h = 18 feet
V = 3.240 feet³
Asked :
l = ...?
Answer :
V = l × w × h
3240 = l × 12 × 18
3240 = 216 l
l = 3240 ÷ 216
l = <u>1</u><u>5</u><u> </u><u>feet</u>
So, the length is 15 feet
<em>Hope it helps and is useful</em><em> </em><em>:</em><em>)</em>