Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:

Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
Answer: some of the energy are shielded away by the ozone layer,
The rest warm the earth
Explanation:
Not all energy from the sun reaches the earth, some of the energy are shielded away by the ozone layer while the rest energy warm the earth