Answer:
W = 2.74 J
Explanation:
The work done by the charge on the origin to the moving charge is equal to the difference in the potential energy of the charges.
This is the electrostatic equivalent of the work-energy theorem.

where the potential energy is defined as follows

Let's first calculate the distance 'r' for both positions.

Now, we can calculate the potential energies for both positions.

Finally, the total work done on the moving particle can be calculated.

Answer:
The correct answer is b, x = 9 cos (pi / 2 t)
Explanation:
The equation that describes a simple pendulum is
θ = θ₀ cos (wt + φ)
The angle is measured is radians
θ = x / L
We replace
d / L = x₀ / L cos (wt + φ)
x₀ = 9 in
We replace
d = 9 cos (wt + φ)
Angular velocity is related to frequency and period.
w = 2π f = 2π / T
The period is the time of a complete oscillation T = 4 s
w =2π / 4
w = π / 2
Let's replace
x = 9 cos (π/2 t + φ)
As the system is released from the root x = x₀ for t = 0 s
x₀ = x₀ cos φ
Cos φ = 1
φ = 0°
The final equation is
x = 9 cos (pi / 2 t)
The correct answer is b
My worldview is someone who doesn't exist. Someone who isn't real but i want them to BE real. It's not possible to have someone who is alike you. Who is there for yo when you need them
all the allials must be aligned in the same direction
magnets are affected by heat, drops, and improper storage
Answer:
25.9 g
Explanation:
= 17.35
8.498
________+
= 25.848 g = 25.85 g = 25.9 g
*so sorry if wrong