A radar receiver indicates that a pulse return as an echo in 20 μs after it was sent. The reflecting object would be 3000 m away .
Phenomenon of hearing back our own sound is called an echo. It is due to successive reflection of sound waves from the surfaces or obstacles of large size. To hear an echo, there must be a time gap of 0.1 second in original sound and the reflected sound.
Given
time = 20 μs = 20 *
s
let distance to the reflecting surface be = x
total distance travelled by pulse will be = 2x
speed = 3.0 ×
m/s
distance = speed * time
2x = 3.0 ×
* 20 *
x = 3000 m
The reflecting object would be 3000 m away
To learn more about echo here
brainly.com/question/14861578?referrer=searchResults
#SPJ4
Answer:
The magnitude of electron acceleration is

Explanation:
Given:
Distance from the wire to the field point
m
Speed of electron 
Current
A
For finding the acceleration,
First find the magnetic field due to wire,

Where 

T
The magnetic force exerted on the electron passing through straight wire,

N
From the newton's second law

Where
mass of electron
kg
So acceleration is given by,



Therefore, the magnitude of electron acceleration is

Hello! Assuming that the only force acting on the mass is 30N...
Fnet = 30N
Fnet = ma (mass x acceleration)
ma = 30N
a = 30N / m
a = 30N / 7kg
a = 4.2857 m/s^2
a = 4 m/s^2
I hope this helps!
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
Resultant is 5 m/s using the Pythagorean theorem<span />