Answer:
<u>Inelastic collision:</u>
A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.
<u>Characteristics of an inelastic collision:</u>
- <em>the momentum of the system is conserved</em>
- <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>
<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>
<u>Elastic </u><u>collision</u><u>:</u>
A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.
<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>
- <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
- <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>
In everyday life, no collision is perfectly elastic.
__________________
ANSWER:
<u>Given examples:</u>
- Two cars colliding with each other form an example of inelastic collision.
<u>Reason:</u>
<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>
- A ball bouncing after colliding with a surface is an example of elastic collision
<u>Reason:</u>
<em>(a very less amount of kinetic energy is lost)</em>
Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Answer:
(a) 
(b) 15 hours
Explanation:
half life, T = 12 hours
No = 19 g
(a) Let N be the amount remaining after time t.
Let λ be the decay constant.

The equation of radioactivity used here is given by


(b) N = 8 gram
Substitute the values in above equation

λ = 0.0577 per hour
So, 

Take natural log on both the sides
- 0.0577 t = - 0.865
t = 15 hours
Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.