Answer:
The third stage of parturition is called " after-birth".
Explanation:
Answer:
mass = 0.18 [kg]
Explanation:
This is a classic problem where we can apply the definition of density which is equal to mass over volume.
![density = \frac{mass}{volume} \\\\where:\\volume = 1 [m^3]\\density = 0.18[kg/m^3]](https://tex.z-dn.net/?f=density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5C%5C%5Cwhere%3A%5C%5Cvolume%20%3D%201%20%5Bm%5E3%5D%5C%5Cdensity%20%3D%200.18%5Bkg%2Fm%5E3%5D)
mass = 0.18*1
mass = 0.18 [kg]
Answer: Mabye like an ocean with dolphins swiming/jumping? Or even use the blue as a sky and then put green grass and do foxes or and a phoenix flying with a fox under it?
Explanation:
Just some ideas!
According to the general rules and basic knowledge of physics, without any doubds I can say that a mole of red photons of wavelength 725 nm has [D] 165 kj of energy. I converted <span> a wavelength into energy in that way :
</span>

=

<span>
</span>
Answer:
a) 0.049 m
b) Yes, increase
Explanation:
Draw a free body diagram.
In the y direction, there are three forces acting on the feeder. Two vertical components of the tension forces in each rope pulling up, and weight force pulling down.
Apply Newton's second law to the feeder in the y direction.
∑F = ma
2Ty − mg = 0
Ty = mg/2
Let's say the distance the rope sags is d. The trees are 4m apart, so the feeder is 2m horizontally from either tree. Using Pythagorean theorem, we can find the length of the rope on either side:
L² = 2² + d²
L = √(4 + d²)
Using similar triangles, we can write a proportion using the forces and distances.
Ty / T = d / L
Substitute:
(mg/2) / T = d / √(4 + d²)
Solve for d:
Td = mg/2 √(4 + d²)
T² d² = (mg/2)² (4 + d²)
T² d² = (mg)² + (mg/2)² d²
(T² − (mg/2)²) d² = (mg)²
d² = (mg)² / (T² − (mg/2)²)
d = mg / √(T² − (mg/2)²)
Given m = 2.4 kg and T = 480 N:
d = (2.4) (9.8) / √(480² − (2.4×9.8/2)²)
d = 0.049 m
b) If a bird lands on a feeder, this will increase the tension in the rope to support the bird's weight.