The binomial expansion:

a = 2y, b = 4 x^3, n = 4
( x )^3k = x^ 9
k = 3


Answer: the coefficient is
512.
For the answer to the question above,
1. If we let x as the side of the square cut-out, the formula for the capacity (volume) of the food dish is:
V = (12 - 2x)(8 - 2x)(x)
V = 96x - 40x^2 + 4x^3
To find the zeros, we equate the equation to 0, so, the values of x that would result to zero would be:
x = 0, 6, 4
2. To get the value of x to obtain the maximum capacity, we differentiate the equation, equate it to zero, and solve for x.
dV/dx = 96 - 80x + 12x^2 = 0
x = 5.10, 1.57
The value of x that would give the maximum capacity is x = 1.57
3. If the volume of the box is 12, then the value of x can be solved using:
12 = 96x - 40x^2 + 4x^3
x = 0.13, 6.22, 3.65
The permissible value of x is 0.13 and 3.65
4. Increasing the cutout of the box increases the volume until its dimension reaches 1.57. After that, the value of the volume decreases it reaches 4.
5. V = (q -2x) (p - 2x) (x)
The answers is 3/9 which you can check by reducing. It reduces to 1/3. Basically you go 1/3 = x/9 then cross multiple to get 9=3x do the division so 3x/3 and 9/3 and you get 3/9.
Answer:
(2x • 5x) + (2x • -2)
Step-by-step explanation:
I think that's what you're looking for, you just distribute the 2x to both of the numbers in the parathesis
Answer:
The degrees of freedom associated with the critical value is 25.
Step-by-step explanation:
The number of values in the final calculation of a statistic that are free to vary is referred to as the degrees of freedom. That is, it is the number of independent ways by which a dynamic system can move, without disrupting any constraint imposed on it.
The degrees of freedom for the t-distribution is obtained by substituting the values of n1 and n2 in the degrees of freedom formula.
Degrees of freedom, df = n1+n2−2
= 15+12−2=27−2=25
Therefore, the degrees of freedom associated with the critical value is 25.