Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>
Answer:
There is an attractive force between the rod and sphere.
Explanation:
When negatively charged rod is placed close to the metal sphere then due to the electric field of the rod the opposite free charge of metal sphere comes closer to the rod on one surface
While similar charge in the metal sphere move away from the rod due to repulsion of electric field of rod
This temporary charge distribution of the metal sphere is known as induction
And since opposite charge on the metal surface comes closer to the metal sphere so here we can say that the rod will attract the metal sphere
so here correct answer will be
There is an attractive force between the rod and sphere.
Units of force are the newton pound.
Answer:
(a) 0.942 m
(b) 18.84 m/s
(c) 2366.3 m/s²
(d) 0.05 s
Explanation:
(a) In one revolution, it travels through one circumference, 2πr = 2 × 3.14 × 0.15 m = 0.942 m.
(b) Its frequency, f, is 1200 rev/min =
rev/s = 20 rev/s.
Its angular frequency, ω = 2πf = 2π × 20 = 40π
The speed is given by
v = ωr = 40π × 0.15 = 6π = 18.84 m/s
(c) Its acceleration is given by, a = ω²r = (40π)² × 0.15 = 2366.3 m/s²
(d) The period is the inverse of the frequency because it is the time taken to complete one revolution.

T = 1/20 = 0.05 s
Answer:
<em>c. The astronaut does not need to worry: the charge will remain on the outside surface.</em>
<em></em>
Explanation:
The astronaut need not worry because <em>according to Gauss's law of electrostatic, a hollow charged surface will have a net zero charge on the inside.</em> This is the case of a Gauss surface, and all the charges stay on the surface of the metal chamber. This same principle explains why passengers are safe from electrostatic charges, in an enclosed aircraft, high up in the atmosphere; all the charges stay on the surface of the aircraft.