Answer:
B. p=(-8/7,0)
Opens right Make sure to brain me if i'm right xoxo
Answer:
d b c
Step-by-step explanation:
fdfbwhgbcsjbcjbchsvbchwgchwvcdn
Answer:
0.2755
Step-by-step explanation:
We intend to make use of the normal approximation to the binomial distribution.
First we'll check to see if that approximation is applicable.
For p=10% and sample size n = 500, we have ...
pn = 0.10(500) = 50
This value is greater than 5, so the approximation is valid.
__
The mean of the distribution we'll use as a model is ...
µ = p·n = 0.10(500)
µ = 50
The standard deviation for our model is ...
σ = √((1-p)µ) = √(0.9·50) = √45
σ ≈ 6.708204
__
A continuity correction can be applied to better approximate the binomial distribution. We want p(t ≤ 9.1%) = p(t ≤ 45.5). For our lookup, we will add 0.5 to this limit, and find p(t ≤ 46).
The attached calculator shows the probability of fewer than 45.5 t's in the sample is about 0.2755.
A) 2, 6, b) 3, 5, c) 1, 7
In 1 hour you pick 60 lines, so in 8 hours you pick 60*8 = 480 lines