<span>The pattern of numbers below is an arithmetic sequence: 14, 24, 34, 44, 54, ... Which statement describes the recursive function used to generate the sequence?
<span>A. The common difference is 1, so the function is f(n + 1) = f(n) + 1 where f(1) = 14.
</span><span>B. The common difference is 4, so the function is f(n + 1) = f(n) + 4 where f(1) = 10.
</span><span>C. The common difference is 10, so the function is f(n + 1) = f(n) + 10 where f(1) = 14.
</span><span>D. The common difference is 14, so the function is f(n + 1) = f(n) + 14 where f(1) = 10.
</span></span>
Answer:

Step-by-step explanation:
We are given that
is in <em>fourth</em> quadrant.
is always positive in 4th quadrant and
is always negative in 4th quadrant.
Also, we know the following identity about
and
:

Using \theta_1 in place of \theta:

We are given that 

is in <em>4th quadrant </em>so
is negative.
So, value of 