1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
4 years ago
13

a) What is an alternating series? An alternating series is a whose terms are__________ . (b) Under what conditions does an alter

nating series converge? An alternating series [infinity] an n = 1 = [infinity] (−1)n − 1bn, n = 1 where bn = |an|, converges if 0 < bn + 1 ≤ bn for all n, and lim n → [infinity] bn = ________. (c) If these conditions are satisfied, what can you say about the remainder after n terms? The error involved in using the partial sum sn as an approximation to the total sum s is the Rn = s − sn and the size of the error is bn + 1. Need Help? Read It Talk to a Tutor
Mathematics
1 answer:
andriy [413]4 years ago
5 0

Answer:

a) An alternating series is a whose terms are alternately positive and negative

b) An alternating series \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n-1} b_n where bn = |an|, converges if 0< b_{n+1} \leq b_n for all n, and \lim_{n \to \infty} b_n = 0

c) The error involved in using the partial sum sn as an approximation to the total sum s is the remainder Rn = s − sn and the size of the error is bn + 1

Step-by-step explanation:

<em>Part a</em>

An Alternating series is an infinite series given on these three possible general forms given by:

\sum_{n=0}^{\infty} (-1)^{n} b_n

\sum_{n=0}^{\infty} (-1)^{n+1} b_n

\sum_{n=0}^{\infty} (-1)^{n-1} b_n

For all a_n >0, \forall n

The initial counter can be n=0 or n =1. Based on the pattern of the series the signs of the general terms alternately positive and negative.

<em>Part b</em>

An alternating series \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n-1} b_n where bn = |an|  converges if 0< b_{n+1} \leq b_n for all n and \lim_{n \to \infty} b_n =0

Is necessary that limit when n tends to infinity for the nth term of bn converges to 0, because this is one of two conditions in order to an alternate series converges, the two conditions are given by the following theorem:

<em>Theorem (Alternating series test)</em>

If a sequence of positive terms {bn} is monotonically decreasing and

<em>\lim_{n \to \infty} b_n = 0<em>, then the alternating series \sum (-1)^{n-1} b_n converges if:</em></em>

<em>i) 0 \leq b_{n+1} \leq b_n \forall n</em>

<em>ii) \lim_{n \to \infty} b_n = 0</em>

then <em>\sum_{n=1}^{\infty}(-1)^{n-1} b_n  converges</em>

<em>Proof</em>

For this proof we just need to consider the sum for a subsequence of even partial sums. We will see that the subsequence is monotonically increasing. And by the monotonic sequence theorem the limit for this subsquence when we approach to infinity is a defined term, let's say, s. So then the we have a bound and then

|s_n -s| < \epsilon for all n, and that implies that the series converges to a value, s.

And this complete the proof.

<em>Part c</em>

An important term is the partial sum of a series and that is defined as the sum of the first n terms in the series

By definition the Remainder of a Series is The difference between the nth partial sum and the sum of a series, on this form:

Rn = s - sn

Where s_n represent the partial sum for the series and s the total for the sum.

Is important to notice that the size of the error is at most b_{n+1} by the following theorem:

<em>Theorem (Alternating series sum estimation)</em>

<em>If  \sum (-1)^{n-1} b_n  is the sum of an alternating series that satisfies</em>

<em>i) 0 \leq b_{n+1} \leq b_n \forall n</em>

<em>ii) \lim_{n \to \infty} b_n = 0</em>

Then then \mid s - s_n \mid \leq b_{n+1}

<em>Proof</em>

In the proof of the alternating series test, and we analyze the subsequence, s we will notice that are monotonically decreasing. So then based on this the sequence of partial sums sn oscillates around s so that the sum s always lies between any  two consecutive partial sums sn and sn+1.

\mid{s -s_n} \mid \leq \mid{s_{n+1} -s_n}\mid = b_{n+1}

And this complete the proof.

You might be interested in
Kayleigh has $4500 in a savings account at the bank that earns 0.8% interest per year. How much
Sloan [31]

Answer:

Kayleigh will have a total of $4608.

Step-by-step explanation:

First, you use the formula, I=PRT (Interest=Principal, Rate, Time), then you distribute the numbers: (I=4500x0.8%x3) when you multiply them all, you get $108, then you lastly add 108 to 4500, and you get your final answer of $4608.

7 0
3 years ago
Read 2 more answers
I need help with this.. Anybodyyy??!
Marta_Voda [28]

Step-by-step explanation:

Given

c² = a² + b²

Making a² subject then

a² = c² - b²

Hope it will help :)

4 0
3 years ago
What is constant of proportionality? explain as if u were to a 5 year old
Y_Kistochka [10]
<span><span>If one variable is always the product of the other and a constant, the two are said to be directly proportional. <span>x and y</span> are directly proportional if the ratio <span>y/x</span> is constant.</span><span>If the product of the two variables is always a constant, the two are said to be inversely proportional. <span>x and y</span> are inversely proportional if the product xy is constant.</span></span>In mathematics<span>, two variables are </span>proportional<span> if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. The constant is called the </span>coefficient<span> of proportionality or </span>proportionality constant<span>.

</span>
7 0
3 years ago
Let C(x) be the statement "x has a cat," let D(x) be the statement "x has a dog," and let F(x) be the statement "x has a ferret.
jek_recluse [69]

Answer:

\mathbf{a)} \left( \exists x \in X\right) \; C(x) \; \wedge \; D(x) \; \wedge \; F(x)\\\mathbf{b)} \left( \forall x \in X\right) \; C(x) \; \vee \; D(x) \; \vee \; F(x)\\\mathbf{c)} \left( \exists x \in X\right) \; C(x) \; \wedge \; F(x) \; \wedge \left(\neg \; D(x) \right)\\\mathbf{d)} \left( \forall x \in X\right) \; \neg C(x) \; \vee \; \neg D(x) \; \vee \; \neg F(x)\\\mathbf{e)} \left((\exists x\in X)C(x) \right) \wedge  \left((\exists x\in X) D(x) \right) \wedge \left((\exists x\in X) F(x) \right)

Step-by-step explanation:

Let X be a set of all students in your class. The set X is the domain. Denote

                                        C(x) -  ' \text{$x $ has a cat}'\\D(x) -  ' \text{$x$ has a dog}'\\F(x) -  ' \text{$x$ has a ferret}'

\mathbf{a)}

Consider the statement '<em>A student in your class has a cat, a dog, and a ferret</em>'. This means that \exists x \in X so that all three statements C(x), D(x) and F(x) are true. We can express that in terms of C(x), D(x) and F(x) using quantifiers, and logical connectives as follows

                         \left( \exists x \in X\right) \; C(x) \; \wedge \; D(x) \; \wedge \; F(x)

\mathbf{b)}

Consider the statement '<em>All students in your class have a cat, a dog, or a ferret.' </em>This means that \forall x \in X at least one of the statements C(x), D(x) and F(x) is true. We can express that in terms of C(x), D(x) and F(x) using quantifiers, and logical connectives as follows

                        \left( \forall x \in X\right) \; C(x) \; \vee \; D(x) \; \vee F(x)

\mathbf{c)}

Consider the statement '<em>Some student in your class has a cat and a ferret, but not a dog.' </em>This means that \exists x \in X so that the statements C(x), F(x) are true and the negation of the statement D(x) . We can express that in terms of C(x), D(x) and F(x) using quantifiers, and logical connectives as follows

                      \left( \exists x \in X\right) \; C(x) \; \wedge \; F(x) \; \wedge \left(\neg \; D(x) \right)

\mathbf{d)}

Consider the statement '<em>No student in your class has a cat, a dog, and a ferret..' </em>This means that \forall x \in X none of  the statements C(x), D(x) and F(x) are true. We can express that in terms of C(x), D(x) and F(x) using quantifiers, and logical connectives as a negation of the statement in the part a), as follows

\neg \left( \left( \exists x \in X\right) \; C(x) \; \wedge \; D(x) \; \wedge \; F(x)\right) \iff \left( \forall x \in X\right) \; \neg C(x) \; \vee \; \neg D(x) \; \vee \; \neg F(x)

\mathbf{e)}

Consider the statement '<em> For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.' </em>

This means that for each of the statements C, F and D there is an element from the domain X so that each statement holds true.

We can express that in terms of C(x), D(x) and F(x) using quantifiers, and logical connectives as follows

           \left((\exists x\in X)C(x) \right) \wedge  \left((\exists x\in X) D(x) \right) \wedge \left((\exists x\in X) F(x) \right)

5 0
4 years ago
Math PLEASE HELP IM SO CONFUSED IM ATTACHING THE SLIDES!!!!
slavikrds [6]

Answer:

  • x = 19, TS = 22

Step-by-step explanation:

  • Use ratios to solve for x. Corresponding sides have same ratio.

Q1

  • (x + 5)/30 = (36 - 20)/20
  • (x + 5)/30 = 16/20 = 4/5
  • 5(x + 5) = 4(30)
  • 5x + 25 = 120
  • 5x = 95
  • x = 19

Q2

  • (5x - 2)/(3x + 1) = 39/26
  • (5x - 2)/(3x + 1) = 3/2
  • 2(5x - 2) = 3(3x + 1)
  • 10x - 4 = 9x + 3
  • 10x - 9x = 3 + 4
  • x = 7

TS = 3x + 1 = 3(7) + 1 = 22

4 0
3 years ago
Other questions:
  • Doreen is flipping two fair coins. What is the probability that both coins land on heads?
    5·1 answer
  • Solve for Y <br><br> Just checking my answer to see if I’m right, <br><br> Thx! :D
    15·1 answer
  • The area of the triangle above is 21. What is the value of x?
    8·2 answers
  • What is the value of -9r - 7 when r = 2?<br> -25<br> -18<br> 11<br> 45
    8·2 answers
  • Simplify. Explanation if you can.
    10·1 answer
  • Why is 6x-4y+4.8 and-2x+y not linear
    11·1 answer
  • A window that is in the shape of a semicircle has a diameter of 28inches. find the area of the window. Round to the nearest tent
    14·1 answer
  • Am I right ? And if I'm not can you help please?
    13·1 answer
  • Write 24/25 as a decimal.
    15·1 answer
  • Funtion 1 is defined by the equation y= -2t+6 funtion 2 is defined by the line h shown in graph
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!