First, we'll identify the beaker containing pure water as follows:
We'll take equal masses from each of the three beakers and measure the mass of each.
We'll then identify the density of each by using the rule : density =mass/volume
Pure water will be the liquid having density equal to 1 gm/cm^3
Then, we'll differentiate between the salt and sugar solution by measuring the conductivity of each solution. Salt solution is a good conductor while solution of sugar is a bad conductor.
Answer:
1.89 V
Explanation:
To calculate the standard cell potential, subtract the reduction potential of the anode from the reduction potential of the cathode.
So for your calculation,
-0.22 V - (-2.11 V)= 1.89 V
Red blood cell is the answer I think
Answer:
23.5 grams of AlBr3 will be produced by 27.20 grams of NaBr
Explanation:
The balanced equation here is
6NaBr + 1AlO3 = 3Na2O + 2AlBr3
6 moles of NaBr are required to produce 2 moles of AlBr3
Mass of one mole of NaBr = 102.894 g/mol
Mass of one mole of AlBr3 = 266.69 g/mol
Mass of 6 moles of NaBr = 6*102.894 g/mol
Mass of two moles of AlBr3 = 2*266.69 g/mol
6*102.894 g NaBr produces 2*266.69 g of AlBr3
23.5 grams of AlBr3 will be produced by (6*102.894)/(2*266.69 )*23.5 = 27.20 grams of NaBr
Halogens have seven valence electrons and reqires one more electron to complete its octet