The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
Mass is calculated by using an objects inertia. Since inertia is a quality of matter that resists motion, we can apply an increasing force to an object until it accelerates.
Then, by measuring its acceleration we can now determine its mass using the simple equation F=m×a, except rewritten as m=Fa.
So we divide the force that we applied by the acceleration rate and we get the objects mass.
Without inertia this cannot be done.
∴ Answer is C
Answer: D. The energy required to boil a substance
Explanation: I just took the quiz and got it correct :)
Answer:
A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types.
Explanation: