Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Answer:The molar mass of atoms of an element is given by the standard relative atomic mass of the element multiplied by the molar mass constant, 1 × 10−3 kg/mol = 1 g/mol.
Explanation:
The answer to the question is C
C. quadruples the rate
<h3>Further explanation</h3>
Given
The rate law :
R=k[A]²
Required
The rate
Solution
There are several factors that influence reaction kinetics :
- 1. Concentration
- 2. Surface area
- 3. Temperature
- 4. Catalyst
- 5. Pressure
- 6. Stirring
The rate is proportional to the concentration.
If the concentration increased, the reaction rate will increase
The reaction is second-order overall(The exponent is 2)
The concentration of A is doubled, the reaction rate will increase :
r = k[A]² ⇒ r= k[2A]²⇒r=4k[A]²
<em>The reaction rate will quadruple.</em>
Answer:
She will have symptoms of dizziness and/or lightheadedness
Explanation: