
Here we go ~
Energy difference btween the two electronic states can be expressed as :

[ h = planks constant,
= frequency ]




The ph of a saturated solution of Ca(OH)2 is 12.35
CALCULATION:
For the reaction
Ca(OH)2 → Ca2+ + 2OH-
we will use the Ksp expression to solve for the concentration [OH-] and then use the acid base concepts to get the pH:
Ksp = [Ca2+][OH-]^2
The listed Ksp value is 5.5 x 10^-6. Substituting this to the Ksp expression, we have
Ksp = 5.5 x 10^-6 = (s) (2s)^2 = 4s^3
s3 = 5.5x10^-6 / 4
Taking the cube root, we now have
s = cube root of (5.5x10^-6 / 4)s
= 0.01112
We know that the value of [OH-] is actually equal to 2s:
[OH-] = 2s = 2 * 0.01112 = 0.02224 M
We can now calculate for pOH:
pOH = - log [OH-]
= -log(0.02224)
= 1.65
Therefore, the pH is
pH = 14 - pOH
= 14 - 1.65
= 12.35
<span>The major part of a multicellular fungus is a twisted mass of hyphae that have grown together called a mycelium</span>
answer: white fur works as a camouflage against the white snow, allowing polar bears an advantage when hunting for food and hiding from predators
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.