1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
4 years ago
6

An automobile engineer is revising a design for a conical chamber that was originally specified to be 12 inches long with a circ

ular base diameter of 5.7 inches. In the new design, the chamber is scaled by a factor of 1.5. What is the volume of the revised chamber? Round your answer to two decimal places.
Mathematics
1 answer:
VMariaS [17]4 years ago
7 0
If it is scaled by a factor of 1.5. Your new values would be 18 inches lengthwise. And 8.55 for the diameter. So next you would fill these values into the formula for finding the volume of a cone. V=3.14(r)^2(h/3) Radius is half diameter so 8.55/2= 4.275. So the completed formula would be pi(4.275)^2 (18/3). Simplified to pi(4.275)^2(6). 

In the end. The volume would be about 344.49. in^3
You might be interested in
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
A Radio tower is located 600 feet from a building. From a window in the building a person determines that the angle of elevation
Novay_Z [31]

Answer:

Draw and label a diagram!

htop of tower / 325 = tan 34°

hbottom of tower / 325 = tan 31°

height of tower = htop of tower + hbottom of tower

8 0
3 years ago
I need the answer pls :)
Sindrei [870]
48
90 degree angle so 90-42=48
4 0
3 years ago
Read 2 more answers
How can i solve that equation
forsale [732]

Answer:

C and E

Step-by-step explanation:

3 \tan( \beta )  = 2.  \:  \:  \:  \:  \tan( \beta )  =  \frac{2}{3}

\frac{h}{x}  =  \tan( \beta )  =  \frac{2}{3}

if \:  \: h = 2 \:  \:  \: x = 3 \:  \:  \: and \:  \:  \: t =  \sqrt{ {h}^{2} + x }

C. t =  \sqrt{13} ✅

○♧○♧○♧○♧○♧○♧○♧○♧○♧○♧○♧○

if \: \: \: h = 4 \:  \:  \:  \: x = 6 \:  \:  \: and \:  \:  \: t =  \sqrt{ {h}^{2}  +  {x}^{2} }

E. t = 2 \sqrt{13} ✅

8 0
3 years ago
What are the factors of 114?
sattari [20]
1,2,3,6,19,38,57,114
3 0
3 years ago
Other questions:
  • Write an equation to represent the cost of printing photos (C) in terms of the number photos printed (P)
    15·1 answer
  • 3. Greg wants to save $1,500 in a year. Can he do this by having
    9·1 answer
  • 23.069 rounded to the nearest hundredth
    13·2 answers
  • Tyrese can eat 246 pieces of candy in 4 hours and 45 minutes. Whay would be the approximate number of candy Tyrese can eat in 1
    9·1 answer
  • Factor completely 36x 2 + 60x + 25
    8·2 answers
  • Peak Cinema has 10 theatres.
    8·1 answer
  • the ratio of red marbles to yellow marbles placed in a bag is 2:7. More marbles are added to the bag: 3 red and 3 yellow marbles
    13·1 answer
  • A bottle of cleaner states that it eliminates 0.999 of germs. For a magazine to recommend a cleaner to its readers, the percent
    8·1 answer
  • The Picture above please do 4a and 4b I’m so lost. Thank you.
    9·1 answer
  • Y=-3x +19 <br> slope:<br> x intercept:<br> y intercept:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!