In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If
, then the bond is non-polar. - If
, then the bond will be covalent. - If
, then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1

As,
is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.
What are the following options?
A) GPS monitoring and satellite imagery of crustal movements
Explanation:
The most recent evidence supporting the theory of plate tectonics is the use of GPS monitoring and satellite imagery of crustal movements.
GPS denotes Global Positioning Systems.
Satellite imagery is a recent advancement in the study of moving plates.
- The global positioning system uses the position of a system of satellites in space to delineate positions on earth.
- It works on the principles of triangulation and this helps to fix positions of objects on the earth surface.
- With this, the change in position of the plates can be recorded by known fixed positions of objects.
- Satellite imagery helps to map changes in terrain with time.
- Images can be correlated through time and the shift in terrains delineated.
learn more:
Wegener brainly.com/question/5002949
#learnwithBrainly
Answer:
<u>167.2 g</u>
Explanation:
Known
VC4H10 = 21.3
T = 0.00 C (convert to Kelvin: 273 K)
P = 1.00 atm
Unknown
m = ?g
1. <u>Write the balanced chemical equation</u>
1 C4H10 + 1O2 -----> 4 CO2 + 5 H2O
2. <u>Find the volume ratio of Carbon Dioxide to Butane </u>
1 C4H10 4 CO2 = 4 volumes CO2 / 1 volume C4H10
3.<u> Multiply by the known volume of n (butane)</u>
21.3 L C4H10 x 4 volumes CO2 / 1 volume C4H10 = 85.2 L C4H10
4. <u>Use ideal gas law</u>
PV = nRT solve for n ----> n = PV/RT
n= (1.00 atm) (85.2 L) / (0.0821 L atm/mol K) (273) = 3.80 mol CO2
5.<u> Find molar mass of CO2</u>
1 C x 12 + 2 O x 16 = 44.00
6. <u>Multiply the ideal gas law solution (3.80) by molar mass CO2 (44.00)</u>
3.80 mol CO2 x 44.00 g CO2
= 167.2 g CO2