Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.
The formula for that compound is AlN
Answer:
Compounds between Nonmetals and Nonmetals
Compounds that consist of a nonmetal bonded to a nonmetal are commonly known as Molecular Compounds, where the element with the positive oxidation state is written first. In many cases, nonmetals form more than one binary compound, so prefixes are used to distinguish them.
Diffusion is the process of a substance spreading out to evenly fill its container or environment. Rate of diffusion of a gas is inversely proportional to the molar mass of the gas.

Lighter(lower) the molar mass of the gas , faster will be its rate of diffusion and heavier (higher) the molar mass of the gas , slower will be its rate of diffusion.
We have to arrange the given gases from slowest rate of diffusion to fastest rate of diffusion that means we need to arrange gases from higher molar mass to lower molar mass.
Molar mass of given gases are :
Cl = 35.5 g/mol
Xe = 131.29 g/mol
He = 4.00 g/mol
N = 14.00 g/mol
So correct order for slowest rate of diffusion (highest molar mass) to fastest rate of diffusion (lowest molar mass) is :
Xe , Cl , N , He
Xe having the highest molar mass will have the slowest rate of diffusion and He with lowest molar mass will have the fastest rate of diffusion, so option 'c' is correct.
Note : Slowest rate of diffusion = High Molar Mass
Fastest rate of diffusion = Low Molar Mass
<span>a. It melts at 1455oC I know this is correct I need One more</span>